1. Nội dung câu hỏi
Cho \(\sin \alpha + \cos \alpha = \frac{1}{3}\) với \( - \frac{\pi }{2} < \alpha < 0\). Tính:
a) \(A = \sin \alpha .\cos \alpha \)
b) \(B = \sin \alpha - \cos \alpha \)
c) \(C = {\sin ^3}\alpha + {\cos ^3}\alpha \)
d) \(D = {\sin ^4}\alpha + {\cos ^4}\alpha \)
2. Phương pháp giải
a) Sử dụng hằng đẳng thức \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\) với \(A = \sin \alpha \), \(B = \cos \alpha \)
Sử dụng công thức \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\).
b) Sử dụng hằng đẳng thức \({\left( {A - B} \right)^2} = {A^2} - 2AB + {B^2}\) với \(A = \sin \alpha \), \(B = \cos \alpha \)
Sử dụng công thức \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) và điều kiện \( - \frac{\pi }{2} < \alpha < 0\) để xét dấu của \(\sin \alpha \) và \(\cos \alpha \).
c) Sử dụng hằng đẳng thức \({\left( {A + B} \right)^3} = {A^3} + {B^3} + 3AB\left( {A + B} \right)\) với \(A = \sin \alpha \), \(B = \cos \alpha \).
Sử dụng công thức \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) và kết quả ở câu a.
d) Sử dụng công thức \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\) với \(A = {\sin ^2}\alpha \), \(B = {\cos ^2}\alpha \)
Sử dụng công thức \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) và kết quả ở câu a.
3. Lời giải chi tiết
a) Ta có \({\left( {\sin \alpha + \cos \alpha } \right)^2} = {\sin ^2}\alpha + 2\sin \alpha .\cos \alpha + {\cos ^2}\alpha = 1 + 2\sin \alpha \cos \alpha \)
Suy ra \(A = \sin \alpha .\cos \alpha = \frac{{{{\left( {\sin \alpha + \cos \alpha } \right)}^2} - 1}}{2} = \frac{{{{\left( {\frac{1}{3}} \right)}^2} - 1}}{2} = - \frac{4}{9}\)
b) Ta có \({B^2} = {\left( {\sin \alpha - \cos \alpha } \right)^2} = {\sin ^2}\alpha - 2\sin \alpha .\cos \alpha + {\cos ^2}\alpha = 1 - 2\sin \alpha \cos \alpha \)
Theo câu a, ta có \(\sin \alpha .\cos \alpha = - \frac{4}{9}\) nên \({B^2} = 1 - 2\left( { - \frac{4}{9}} \right) = \frac{{17}}{9} \Rightarrow B = \pm \frac{{\sqrt {17} }}{3}\).
Do \( - \frac{\pi }{2} < \alpha < 0\) , ta suy ra \(\sin \alpha < 0\), \(\cos \alpha > 0\). Từ đó \(B = \sin \alpha - \cos \alpha < 0\).
Như vậy \(B = - \frac{{\sqrt {17} }}{3}\)
c) Ta có \({\left( {\sin \alpha + \cos \alpha } \right)^3} = {\sin ^3}\alpha + {\cos ^3}\alpha + 3\sin \alpha .\cos \alpha \left( {\sin \alpha + \cos \alpha } \right)\)
Theo câu a, ta có \(\sin \alpha .\cos \alpha = - \frac{4}{9}\) nên:
\(C = {\left( {\sin \alpha + \cos \alpha } \right)^3} - 3\sin \alpha .\cos \alpha \left( {\sin \alpha + \cos \alpha } \right) = {\left( {\frac{1}{3}} \right)^3} - 3.\frac{{ - 4}}{9}.\frac{1}{3} = \frac{{13}}{{27}}\).
d) Ta có \({\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right)^2} = {\left( {{{\sin }^2}\alpha } \right)^2} + {\left( {{{\cos }^2}\alpha } \right)^2} + 2{\sin ^2}\alpha {\cos ^2}\alpha \)
\( = {\sin ^4}\alpha + {\cos ^4}\alpha + 2{\sin ^2}\alpha {\cos ^2}\alpha \)
Theo câu a, ta có \(\sin \alpha .\cos \alpha = - \frac{4}{9}\) nên:
\(D = {\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right)^2} - 2{\left( {\sin \alpha .\cos \alpha } \right)^2} = 1 - 2{\left( { - \frac{4}{9}} \right)^2} = \frac{{49}}{{81}}\)
Chủ đề 3: Kĩ thuật đá bóng
SGK Ngữ Văn 11 - Cánh Diều tập 2
Chương 4: Hydrocarbon
Unit 4: Planet Earth
SGK Toán 11 - Chân trời sáng tạo tập 1
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11