1. Nội dung câu hỏi
Cho hai đa thức:
\(P = 4{x^3}y{z^2} - 3{x^2}y - 2{x^3}y{z^2} + {x^2}y - 2xy + y + 5\);
\(Q = - {x^3}y{z^2} - 2{x^2}y + 3 + 3{x^3}y{z^2} + xy - y + 2\).
a) Thu gọn và xác định bậc của mỗi đa thức P và Q.
b) Xác định bậc của mỗi đa thức \(P + Q\) và \(P - Q\).
2. Phương pháp giải
a) Bậc của đa thức là bậc của hạng tử có bậc cao nhất trong dạng thu gọn của đa thức đó.
b) Muốn cộng (hay trừ) hai đa thức, ta nối hai đa thức đã cho bởi dấu (+) (hoặc dấu (-) rồi bỏ dấu ngoặc (nếu có) và thu gọn đa thức nhận được.
Chú ý trước dấu ngoặc là dấu (-) thì khi phá ngoặc, ta đổi dấu tất cả các hạng tử trong dấu ngoặc.
Sử dụng tính chất giao hoán, kết hợp các hạng tử đồng dạng với nhau rồi thu gọn.
3. Lời giải chi tiết
a) Ta có
\(P = 4{x^3}y{z^2} - 3{x^2}y - 2{x^3}y{z^2} + {x^2}y - 2xy + y + 5\)
\( = \left( {4{x^3}y{z^2} - 2{x^3}y{z^2}} \right) + \left( { - 3{x^2}y + {x^2}y} \right) - 2xy + y + 5\)
\( = 2{x^3}y{z^2} - 2{x^2}y - 2xy + y + 5\).
Đa thức P có bậc \(3 + 1 + 2 = 6\).
\(Q = - {x^3}y{z^2} - 2{x^2}y + 3 + 3{x^3}y{z^2} + xy - y + 2\)
\( = \left( { - {x^3}y{z^2} + 3{x^3}y{z^2}} \right) - 2{x^2}y + xy - y + \left( {3 + 2} \right)\)
\( = 2{x^3}y{z^2} - 2{x^2}y + xy - y + 5\).
Đa thức Q có bậc là \(3 + 1 + 2 = 6\).
b) Ta có
\( = 2{x^3}y{z^2} - 2{x^2}y - 2xy + y + 5 + 2{x^3}y{z^2} - 2{x^2}y + xy - y + 5\)
\( = \left( {2{x^3}y{z^2} + 2{x^3}y{z^2}} \right) + \left( { - 2{x^2}y - 2{x^2}y} \right) + \left( { - 2xy + xy} \right) + \left( {y - y} \right) + \left( {5 + 5} \right)\)
\( = 4{x^3}y{z^2} - 4{x^2}y - xy + 10\).
Đa thức P+Q là đa thức bậc 6.
\( = 2{x^3}y{z^2} - 2{x^2}y - 2xy + y + 5 - 2{x^3}y{z^2} + 2{x^2}y - xy + y - 5\)
\( = \left( {2{x^3}y{z^2} - 2{x^3}y{z^2}} \right) + \left( { - 2{x^2}y + 2{x^2}y} \right) + \left( { - 2xy - xy} \right) + \left( {y + y} \right) + \left( {5 - 5} \right)\)
\( = - 3xy + 2y\).
Đa thức P-Q là đa thức bậc 2.
Bài 26. Đặc điểm tài nguyên khoáng sản Việt Nam
CHƯƠNG X: NỘI TIẾT
SGK Toán 8 - Chân trời sáng tạo tập 2
Bài 7
Review 3 (Units 7-8-9)
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8