1. Nội dung câu hỏi
Cho hình thang cân \(ABCD\) có \(AB//CD,AB < CD\), hai đường chéo \(AC\) và \(BD\) cắt nhau tại \(P\), hai cạnh bên \(AD\) và \(BC\) kéo dài cắt nhau tại \(Q\). Chứng minh \(PQ\) là đường trung trực của hai đáy hình thang cân \(ABCD\).
2. Phương pháp giải
Dựa vào tính chất của hình thang cân:
- Hai cạnh bên bằng nhau
- Hai đường chéo bằng nhau
Và sử dụng định nghĩa của đường trung trực: đường thẳng đi qua trung điểm của đoạn thẳng và vuông góc với đoạn thẳng gọi là đường trung trực của đoạn thẳng ấy.
3. Lời giải chi tiết
\(\Delta ACD = \Delta BDC\) (c.g.c). Suy ra \(\widehat {PCD} = \widehat {PDC}\)
Do đó, tam giác \(PCD\) cân tại \(P\). Suy ra \(PC = PD\)
Mà \(AC = BD\), suy ra \(PA = PB\)
Do \(AB//CD\) nên \(\widehat {QAB} = \widehat {ADC};\widehat {QBA} = \widehat {BCD}\) (các cặp góc đồng vị)
Mặt khác, \(\widehat {ADC} = \widehat {BCD}\) nên \(\widehat {QAB} = \widehat {QBA}\)
Do đó, tam giác \(QAB\) cân tại \(Q\). Suy ra \(QA = QB\)
Mà \(AD = BC\), suy ra \(QD = QC\)
Ta có: \(PA = PB,PC = PD\) và \(QA = QB,QC = QD\) nên \(PQ\) là đường trung trực của cả hai đoạn thẳng \(AB\) và \(CD\).
CHƯƠNG III: TUẦN HOÀN
Unit 4. A teenager's life
Bài 27
Unit 2: I'd Like to Be a Pilot.
Chương 3. Mol và tính toán hóa học
SGK Toán Lớp 8
SGK Toán 8 - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8