SBT Toán 8 - Kết nối tri thức với cuộc sống tập 2

Câu hỏi 12 - Mục Bài tập trang 82

1. Nội dung câu hỏi

Cho tam giác ABC có đường cao AH. Lấy E, F lần lượt trên AB, AC sao cho HE, HF lần lượt vuông góc với AB, AC. Lấy điểm D trên EF sao cho AD vuông góc với EF. Đường thẳng AD cắt BC tại M. Chứng minh rằng:

a) \(AE.AB = AF.AC\)

b) $\Delta ADE\backsim \Delta AHC$ và $\Delta ANF\backsim \Delta AMB$ ($\Delta ANF\backsim \Delta AMB$ không chứng minh được vì đề bài không cho vị trí của điểm N).

 

2. Phương pháp giải

a) Sử dụng kiến thức về định lý (trường hợp đồng dạng góc – góc) để chứng minh: Nếu hai góc của tam giác lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng với nhau.

b) + Sử dụng kiến thức về định lý (trường hợp đồng dạng cạnh – góc – cạnh) để chứng minh: Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và góc tạo bởi các cặp cạnh đó bằng nhau thì hai tam giác đó đồng dạng với nhau.

+ Sử dụng kiến thức về định lý (trường hợp đồng dạng góc – góc) để chứng minh: Nếu hai góc của tam giác lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng với nhau.

 

3. Lời giải chi tiết

a) Vì AH là đường cao của tam giác ABC nên \(\widehat {AHB} = \widehat {AHC} = {90^0}\)

Vì HE, HF lần lượt vuông góc với AB, AC nên \(HE \bot AB,HF \bot AC\)

Do đó, \(\widehat {HEB} = \widehat {HEA} = \widehat {HFA} = \widehat {HFC} = {90^0}\)

Tam giác HEA và tam giác BHA có:

\(\widehat {HEA} = \widehat {AHB} = {90^0},\widehat {BAH}\;chung\)

Do đó, $\Delta HEA\backsim \Delta BHA\left( g-g \right)$

Suy ra: \(\frac{{AE}}{{AH}} = \frac{{AH}}{{AB}}\) nên \(AE.AB = A{H^2}\left( 1 \right)\)

Tam giác HFA và tam giác CHA có:

\(\widehat {HFA} = \widehat {AHC} = {90^0},\widehat {CAH}\;chung\)

Do đó, $\Delta HFA\backsim \Delta CHA\left( g-g \right)$

Suy ra: \(\frac{{AF}}{{AH}} = \frac{{AH}}{{AC}}\) nên \(AF.AC = A{H^2}\left( 2 \right)\)

Từ (1) và (2) ta có: \(AE.AB = AF.AC\)

b) Vì \(AE.AB = AF.AC\) nên \(\frac{{AE}}{{AC}} = \frac{{AF}}{{AB}}\)

Tam giác AEF và tam giác ACB có: \(\frac{{AE}}{{AC}} = \frac{{AF}}{{AB}},\widehat {BAC}\;chung\)

Do đó, $\Delta AEF\backsim \Delta ACB\left( c-g-c \right)$, suy ra, \(\widehat {AEF} = \widehat C\)

Tam giác AED và tam giác ACH có:

\(\widehat {ADE} = \widehat {AHC} = {90^0},\widehat {AEF} = \widehat C\left( {cmt} \right)\)

Do đó, $\Delta ADE\backsim \Delta AHC\left( g-g \right)$ 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved