Bài 1.17 trang 23

Đề bài

Tìm parabol \(y = a{x^2} + bx + c\) trong mỗi trường hợp sau:

a) Parabol đi qua ba điểm A(2;-1), B(4;3) và C(-1;8);

b) Parabol nhận đường thẳng \(x = \frac{5}{2}\) làm trục đối xứng và đi qua hai điểm M(1;0), N(5;-4).

Phương pháp giải - Xem chi tiết

b) Trục đối xứng là đường thẳng \(x =  - \frac{b}{{2a}}\)

Lời giải chi tiết

a) \(A(2; - 1) \in \) parabol nên ta có: \( - 1 = a{.2^2} + b.2 + c\) hay \(4a + 2b + c =  - 1\)

Tương tự, parabol đi qua B(4;3) và C(-1;8) nên:

\(3 = a{.4^2} + b.4 + c\) hay \(16a + 4b + c = 3\)

\(8 = a.{( - 1)^2} + b.( - 1) + c\) hay \(a - b + c = 8\)

Ta có hệ phương trình:

\(\left\{ \begin{array}{l}4a + 2b + c =  - 1\\16a + 4b + c = 3\\a - b + c = 8\end{array} \right.\)

Dùng máy tính cầm tay giải HPT, ta được a = 1, b = -4, c = 3.

Vậy parabol cần tìm là: \(y = {x^2} - 4x + 3\)

b)

Parabol nhận \(x = \frac{5}{2}\) làm trục đối xứng nên \( - \frac{b}{{2a}} = \frac{5}{2}\) hay \(5a + b = 0\)

M(1;0) thuộc parabol nên ta có: \(0 = a{.1^2} + b.1 + c\) hay \(a + b + c = 0\)

N(5;-4) thuộc parabol nên ta có: \( - 4 = a{.5^2} + b.5 + c\) hay \(25a + 5b + c =  - 4\)

Từ đó ta có hệ phương trình

\(\left\{ \begin{array}{l}5a + b = 0\\a + b + c = 0\\25a + 5b + c =  - 4\end{array} \right.\)

Dùng máy tính cầm tay giải HPT, ta được a = -1, b = 5, c = -4.

Vậy parabol cần tìm là: \(y =  - {x^2} + 5x - 4\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved