PHẦN ĐẠI SỐ - SBT TOÁN 8 TẬP 1

Bài 11.2 phần bài tập bổ sung trang 12 SBT toán 8 tập 1

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Tìm \(n(n \in \mathbb N)\) để mỗi phép chia sau đây là phép chia hết

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

\(\) \(\left( {{x^5} - 2{x^3} - x} \right):7{x^n}\)

Phương pháp giải:

+) Đa thức \(A\) chia hết cho đơn thức \(B\) nếu các hạng tử của đa thức \(A\) đều chia hết cho đơn thức \(B\).

+) Sử dụng nhận xét: Đơn thức \(A\) chia hết cho đơn thức \(B\) khi mỗi biến của \(B\) đều là biến của \(A\) với số mũ nhỏ hơn hoặc bằng số mũ của nó trong \(A\). 

Lời giải chi tiết:

\(\) \(\left( {{x^5} - 2{x^3} - x} \right)\) chia hết cho \(7{x^n}\) nên mỗi hạng tử của đa thức chia hết cho \(7{x^n}\)

Suy ra \(x\) chia hết cho \(7x^n\) ( trong đó \(x\) là hạng tử có số mũ nhỏ nhất)

Do đó \(n \le 1\)

Vì  \(n \in \mathbb N \Rightarrow n = 0\)  hoặc \(n = 1\)

Vậy \(n = 0\)  hoặc \(n = 1\)  thì \(\left( {{x^5} - 2{x^3} - x} \right) \vdots \;7{x^n}\)

LG b

\(\) \(\left( {5{x^5}{y^5} - 2{x^3}{y^3} - {x^2}{y^2}} \right):2{x^n}{y^n}\)

Phương pháp giải:

+) Đa thức \(A\) chia hết cho đơn thức \(B\) nếu các hạng tử của đa thức \(A\) đều chia hết cho đơn thức \(B\).

+) Sử dụng nhận xét: Đơn thức \(A\) chia hết cho đơn thức \(B\) khi mỗi biến của \(B\) đều là biến của \(A\) với số mũ nhỏ hơn hoặc bằng số mũ của nó trong \(A\). 

Lời giải chi tiết:

\(\) \(5{x^5}{y^5} - 2{x^3}{y^3} - {x^2}{y^2}\) chia hết cho \(2{x^n}{y^n}\) nên mỗi hạng tử của đa thức đều chia hết cho \(2{x^n}{y^n}\).

Suy ra \(x^2y^2\) chia hết cho \(2x^ny^n\) (trong đó \(x^2y^2\) là hạng tử có số mũ của \(x\) và \(y\) đều nhỏ nhất)

Do đó \(n≤2\)

Vì  \( n \in \mathbb N \Rightarrow n\in \left\{ {0;1;2} \right\}\) 

Vậy với \( n \in \left\{ {0;1;2} \right\}\)  thì \(\left( {5{x^5}{y^5} - 2{x^3}{y^3} - {x^2}{y^2}} \right) \vdots \;2{x^n}{y^n}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved