Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Bài tập ôn chương III. Góc với đường tròn
Giải các hệ phương trình :
LG a
LG a
\( \left\{ \begin{gathered} \frac{2}{{x + y}} + \frac{1}{{x - y}} = 3 \hfill \\ \frac{1}{{x + y}} - \frac{3}{{x - y}} = 1 \hfill \\\end{gathered}\right.\)
Phương pháp giải:
Đưa về dạng hệ hai phương trình bậc nhất hai ẩn bằng cách đặt ẩn phụ.
Sử dụng phương pháp cộng đại số:
+) Bước \(1:\) Cộng hay trừ từng vế hai phương trình của hệ phương trình đã cho để được một phương trình mới.
+) Bước \(2:\) Dùng phương trình mới ấy thay thế cho một trong hai phương trình của hệ (và giữ nguyên phương trình kia).
Lời giải chi tiết:
Điều kiện \(x \ne \pm y.\) Đặt \(u = \dfrac{1}{{x + y}};v = \dfrac{1}{{x - y}}.\) Hệ phương trình trở thành : \(\left\{ \begin{gathered}2u + v = 3 \hfill \\ u - 3v = 1 \hfill \\ \end{gathered} \right.\,\,\,\,\left( * \right)\).
Giải hệ phương trình \(\left( * \right)\) ta được :\(\left\{ \begin{gathered}2u + v = 3 \hfill \\ u - 3v = 1 \hfill \\ \end{gathered} \right.\)\(\Rightarrow\left\{ \begin{gathered}2u + v = 3 \hfill \\ 2u - 6v = 2 \hfill \\ \end{gathered} \right.\)\(\Rightarrow\left\{ \begin{gathered}7v = 1 \hfill \\ u - 3v = 1 \hfill \\ \end{gathered} \right.\)\(\Rightarrow\left\{ \begin{gathered}v = \dfrac{1}{7} \hfill \\ u = 1 +3.\dfrac{1}{7}\hfill \\ \end{gathered} \right.\)
\(\Rightarrow\left\{ \begin{gathered}u = \frac{{10}}{7} \hfill \\ v = \frac{1}{7} \hfill \\\end{gathered} \right. \)\(\Rightarrow \left\{ \begin{gathered} \frac{1}{{x + y}} = \frac{{10}}{7} \hfill \\\frac{1}{{x - y}} = \frac{1}{7} \hfill \\\end{gathered} \right. \)\(\Leftrightarrow \left\{ \begin{gathered} x + y = \frac{7}{{10}} \hfill \\ x - y = 7 \hfill \\\end{gathered} \right. \)
\(\Leftrightarrow \left\{ \begin{gathered} 2x = \frac{{77}}{{10}} \hfill \\ y = x-7 \hfill \\\end{gathered} \right.\)
\(\Leftrightarrow \left\{ \begin{gathered} x = \frac{{77}}{{20}} \hfill \\ y = \frac{{77}}{{20}}-7 \hfill \\\end{gathered} \right.\)
\(\Leftrightarrow \left\{ \begin{gathered} y = - \frac{{63}}{{20}} \hfill \\ x = \frac{{77}}{{20}} \hfill \\\end{gathered} \right.\)
Vậy nghiệm của hệ phương trình là : \(\left( {\dfrac{{77}}{{20}}\,\,;\,\, - \dfrac{{63}}{{20}}} \right).\)
LG b
LG b
\(\left\{ \begin{gathered} 3\sqrt x - 2\sqrt y = - 2 \hfill \\2\sqrt x + \sqrt y = 1 \hfill \\ \end{gathered} \right.\)
Phương pháp giải:
Đưa về dạng hệ hai phương trình bậc nhất hai ẩn bằng cách đặt ẩn phụ.
Sử dụng phương pháp cộng đại số:
+) Bước \(1:\) Cộng hay trừ từng vế hai phương trình của hệ phương trình đã cho để được một phương trình mới.
+) Bước \(2:\) Dùng phương trình mới ấy thay thế cho một trong hai phương trình của hệ (và giữ nguyên phương trình kia).
Lời giải chi tiết:
Điều kiện \(x \geqslant 0;y \geqslant 0.\) Đặt \(\sqrt x = u\left( {u \geqslant 0} \right),\sqrt y = v\left( {v \geqslant 0} \right).\) Hệ phương trình trở thành :
\(\left\{ \begin{gathered} 3u - 2v = - 2 \hfill \\ 2u + v = 1 \hfill \\\end{gathered} \right. \)\(\Leftrightarrow\left\{ \begin{gathered} 3u - 2v = - 2 \hfill \\ 4u +2 v = 2 \hfill \\\end{gathered} \right. \)
\(\Leftrightarrow\left\{ \begin{gathered} 7u= 0 \hfill \\ 4u +2 v = 2 \hfill \\\end{gathered} \right. \)
\(\Leftrightarrow \left\{ \begin{gathered} u = 0 \hfill \\ v = 1 \hfill \\\end{gathered} \right.\)
\( \Rightarrow \left\{ \begin{gathered} \sqrt x = 0 \hfill \\\sqrt y = 1 \hfill \\\end{gathered} \right.\)\( \Rightarrow \left\{ \begin{gathered} x = 0 (tm)\hfill \\ y = 1(tm) \hfill \\\end{gathered} \right.\)
Vậy nghiệm của hệ phương trình là \(\left( {0\,\,;\,\,1} \right).\)
Bài 34. Thực hành: Phân tích một số ngành công nghiệp trọng điểm ở Đông Nam Bộ
DI TRUYỀN VÀ BIẾN DỊ
Đề thi vào 10 môn Toán Khánh Hòa
Các thể loại văn tham khảo lớp 9
Đề thi học kì 1 mới nhất có lời giải