Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Đề bài
Không dùng bảng số hoặc máy tính, hãy so sánh \(\dfrac{1}{{\sqrt 3 - \sqrt 2 }}\) với \(\sqrt 5 + 1\).
Phương pháp giải - Xem chi tiết
Trục căn thức ở mẫu:
Với \(\sqrt A \ne \sqrt B \)
\(\begin{array}{l}
\dfrac{1}{{\sqrt A - \sqrt B }} = \dfrac{{\sqrt A + \sqrt B }}{{A - B}}
\end{array}\)
So sánh: Với \(A, B\ge 0\) thì \(A^2<B^2 \Rightarrow A<B\)
Lời giải chi tiết
\(\begin{array}{l}
\dfrac{1}{{\sqrt 3 - \sqrt 2 }} \\= \dfrac{{\sqrt 3 + \sqrt 2 }}{{\left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)}}\\
= \dfrac{{\sqrt 3 + \sqrt 2 }}{{3 - 2}} = \sqrt 3 + \sqrt 2
\end{array}\)
So sánh \(\sqrt 3 + \sqrt 2 \) và \(\sqrt 5 + 1\)
Xét \(A = \sqrt 3 + \sqrt 2 >0\)
\({A^2} = {(\sqrt 3 + \sqrt 2 )^2} \)\(= 3+ 2\sqrt 3.\sqrt 2+2=5 + 2\sqrt 6 \)
\({A^2} - 5 = 2\sqrt 6 \)
Xét \(B = \sqrt 5 + 1>0\)
\({B^2} = {(\sqrt 5 + 1)^2} \)\(=5+ 2\sqrt 5.1+1= 6 + 2\sqrt 5 \)
\({B^2} - 5 = 1 + 2\sqrt 5 \)
Ta so sánh: \(2\sqrt 6 \) và \(1 + 2\sqrt 5 \)
\({(2\sqrt 6 )^2} = 24=21+3\)
\({(1 + 2\sqrt 5 )^2} \)\(=1+ 2.1.2\sqrt 5 +20=21 + 4\sqrt 5 \)
Do \(3<4\) và \( \sqrt 5>1\) nên \(3 < 4\sqrt 5 \Rightarrow 24 < 21 + 4\sqrt 5 \)
\(\Rightarrow 2\sqrt 6 < 1 + 2\sqrt 5 \)
Vậy
\(\begin{array}{l}
{A^2} - 5 < {B^2} - 5\\
\Leftrightarrow {A^2} < {B^2}\\ \Rightarrow A<B
\end{array}\)
Hay \(\dfrac{1}{{\sqrt 3 - \sqrt 2 }} < \sqrt 5 + 1\).
Tải 30 đề ôn tập học kì 1 Toán 9
Các thể loại văn tham khảo lớp 9
Đề kiểm tra 15 phút - Chương 1 - Hóa học 9
PHẦN DI TRUYỀN VÀ BIẾN DỊ
Bài 25. Vùng duyên hải Nam Trung Bộ