PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 1

Bài 10.2 phần bài tập bổ sung trang 96 SBT toán 8 tập 1

Đề bài

Cho góc \(xOy\) cố định khác góc bẹt. Các điểm \(A\) và \(B\) theo thứ tự chuyển động trên các tia \(Ox\) và \(Oy\) sao cho \(OA = OB.\) Đường vuông góc với \(OA\) tại \(A\) và đường vuông góc với \(OB\) tại \(B\) cắt nhau ở \(M.\) Điểm \(M\) chuyển động trên đường nào \(?\)

Phương pháp giải - Xem chi tiết

Tập hợp các điểm cách đều cách đều hai cạnh của một góc là tia phân giác của góc ấy.

Lời giải chi tiết

 

Xét hai tam giác vuông \(MOA\) và \(MOB:\) \(\widehat {MAO} = \widehat {MBO} = {90^0}\)

\(OA = OB\;\; (gt)\)

\(OM\) cạnh huyền chung

Do đó: \(∆ MAO = ∆ MBO\) (cạnh huyền, cạnh góc vuông)

\( \Rightarrow \widehat {AOM} = \widehat {BOM}\)

\(A\) và \(B\) thay đổi, \(OA\) và \(OB\) luôn bằng nhau nên \(∆ MAO\) và \(∆ MBO\) luôn luôn bằng nhau do đó \(\widehat {AOM} = \widehat {BOM}\)

Vậy khi \(A\) chuyển động trên \(Ox,\) \(B\) chuyển động trên \(Oy\) mà \(OA = OB\) thì điểm \(M\) chuyển động trên tia phân giác của góc \(xOy.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved