Chuyên đề 3: Ba đường conic và ứng dụng

Bài 1 trang 66

Đề bài

Cho hình chữ nhật ABCD với bốn đỉnh \(A\left( { - 4;3} \right),B\left( {4;3} \right),C\left( {4; - 3} \right),D\left( { - 4; - 3} \right).\)

a) Viết phương trình chính tắc của elip nhận ABCD là hình chữ nhật cơ sở. Vẽ elip đó

b) Viết phương trình chính tắc của hypebol nhận ABCD là hình chữ nhật cơ sở. Vẽ hypebol đó

Phương pháp giải - Xem chi tiết

Trong mặt phẳng tọa độ \(Oxy\), ta xét Elip \(\left( E \right)\) có phương trình chính tắc là: \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\), trong đó \(a > b > 0\) . Khi đó ta có:

+ Hình chữ nhật cơ sở có bốn đỉnh là \(P\left( { - a;b} \right),Q\left( {a;b} \right),R\left( {a; - b} \right),S\left( { - a; - b} \right)\)

Phương trình của hypebol \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) trong đó \(a > 0,b > 0\). Khi đó ta có:

+ Hình chữ nhật cơ sở có 4 đỉnh \(P\left( { - a;b} \right),Q\left( {a;b} \right),R\left( {a; - b} \right),S - \left( {a;b} \right).\)

Lời giải chi tiết

a) Elip nhận ABCD là hình chữ nhật cơ sở nên \(a = 4,b = 3\)

Phương trình chính tắc của elip là \(\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1\)

Để vẽ elip (E), ta có thể làm như sau:

Bước 1: Vẽ hình chữ nhật cơ sở có bốn cạnh thuộc bốn thường thẳng \(x =  - 4,x = 4,y =  - 3,y = 3\)

Bước 2: Tìm một số điểm cụ thể thuộc elip, chẳng hạn, ta thấy điểm \(M\left( {\frac{{12}}{5};\frac{{12}}{5}} \right)\) và điểm \(N\left( {\frac{{16}}{5};\frac{9}{5}} \right)\) thuộc (E) và điểm \({M_1}\left( {\frac{{12}}{5}; - \frac{{12}}{5}} \right),{M_2}\left( { - \frac{{12}}{5};\frac{{12}}{5}} \right),{M_3}\left( { - \frac{{12}}{5}; - \frac{{12}}{5}} \right),{N_1}\left( {\frac{{16}}{5}; - \frac{9}{5}} \right),{N_3}\left( { - \frac{{16}}{5};\frac{9}{5}} \right),{N_3}\left( { - \frac{{16}}{5}; - \frac{9}{5}} \right)\) thuộc (E)

Bước 3: Vẽ đường elip (E) đi qua các điểm cụ thể trên, nằm ở phía trong hình chữ nhật cơ sở và tiếp xúc với các cạnh của hình chữ nhật cơ sở tại bốn điểm của đỉnh (E) là \({A_1}\left( { - 4;0} \right),{A_1}\left( {4;0} \right),{A_3}\left( {0; - 3} \right),{A_4}\left( {0;3} \right)\)

 

b) Hypebol nhận ABCD là hình chữ nhật cơ sở nên \(a = 4,b = 3\)

Phương trình chính tắc của hypebol là \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\)

Để vẽ hypebol (H), ta có thể làm như sau:

Bước 1: Vẽ hình chữ nhật cơ sở có bốn cạnh thuộc bốn thường thẳng \(x =  - 4,x = 4,y =  - 3,y = 3\)

Bước 2: Vẽ hai đường chéo của hình chữ nhật cơ sở

Tìm một số điểm cụ thể thuộc hypebol, chẳng hạn, ta thấy điểm \(M\left( {\frac{{20}}{3};4} \right)\) thuộc (H) và điểm \({M_1}\left( {\frac{{20}}{3}; - 4} \right),{M_2}\left( { - \frac{{20}}{3};4} \right),{M_3}\left( { - \frac{{20}}{3}; - 4} \right)\) thuộc (H)

Bước 3: Vẽ đường hypebol (H) bên ngoài hình chữ nhật cơ sở, nhánh bên trái tiếp xúc với cạnh của hình chữ nhật cơ sở tại điểm \({A_1}\left( { - 4;0} \right)\) và điểm \({M_2},{M_3}\); nhánh bên phải tiếp xúc với cạnh của hình chữ nhật cơ sở tại điểm \({A_2}\left( {4;0} \right)\) và điểm \(M,{M_1}\). Vẽ các điểm thuộc hypebol càng xa gốc tọa độ thì càng sát với đường tiệm cận. Hypebol nhận gốc tọa độ là tâm đối xứng và hai trục tọa độ là hai trục đối xứng.

 

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved