1. Nội dung câu hỏi
Cho cấp số nhân \(\left( {{u_n}} \right)\) có \({u_1} = 3\) và \(q = \frac{2}{3}\). Tìm công thức số hạng tổng quát của cấp số nhân đó.
2. Phương pháp giải
Sử dụng kiến thức về số hạng tổng quát của cấp số nhân để tính: Nếu một cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công bội q thì số hạng tổng quát \({u_n}\) của nó được xác định bởi công thức: \({u_n} = {u_1}.{q^{n - 1}},n \ge 2\).
3. Lời giải chi tiết
Công thức số hạng tổng quát của cấp số nhân là: \({u_n} = {u_1}.{q^{n - 1}} = 3.{\left( {\frac{2}{3}} \right)^{n - 1}} = \frac{{{2^{n - 1}}}}{{{3^{n - 2}}}}\).
Chuyên đề 3. Mở đầu điện tử học
Tải 10 đề thi giữa kì 1 Sinh 11
Chương 5. Cơ thể là một thể thống nhất và ngành nghề liên quan đến sinh học cơ thể
Chủ đề 1: Cạnh tranh, cung, cầu trong kinh tế thị trường
Phần 3. Động cơ đốt trong
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11