Đề bài
Khai triển các biểu thức sau:
a) \({\left( {2x + 1} \right)^4}\)
b)\({\left( {3y - 4} \right)^4}\)
c)\({\left( {x + \frac{1}{2}} \right)^4}\)
d)\({\left( {x - \frac{1}{3}} \right)^4}\)
Phương pháp giải - Xem chi tiết
Sử dụng khai triển Nhị thức Newton với \(n = 4\): \({\left( {a + b} \right)^4} = {a^4} + 4{a^3}b +6{a^2}{b^2} + 4a{b^3} + {b^4}\)
Lời giải chi tiết
a)
\({\left( {2x + 1} \right)^4}\) = \({\left( {2x} \right)^4} + 4.{\left( {2x} \right)^3}{.1^1} + 6.{\left( {2x} \right)^2}{.1^2} + 4.\left( {2x} \right){.1^3} + {1^4} = 16{x^4} + 32{x^3} + 24{x^2} + 8x + 1\)
b)
\(\begin{array}{l}{\left( {3y - 4} \right)^4} = {\left[ {3y + \left( { - 4} \right)} \right]^4}\\ = {\left( {3y} \right)^4} + 4.{\left( {3y} \right)^3}.\left( { - 4} \right) + 6.{\left( {3y} \right)^2}.{\left( { - 4} \right)^2} + 4.{\left( {3y} \right)^1}{\left( { - 4} \right)^3} + {\left( { - 4} \right)^4}\\ = 81{y^4} - 432{y^3} + 864{y^2} - 768y + 256\end{array}\)
c)
\({\left( {x + \frac{1}{2}} \right)^4} \)= \({x^4} + 4.{x^3}.{\left( {\frac{1}{2}} \right)^1} + 6.{x^2}.{\left( {\frac{1}{2}} \right)^2} + 4.x.{\left( {\frac{1}{2}} \right)^3} + {\left( {\frac{1}{2}} \right)^4} = {x^4} + 2{x^3} + \frac{3}{2}{x^2} + \frac{1}{2}x + \frac{1}{{16}}\)
d)
\(\begin{array}{l}{\left( {x - \frac{1}{3}} \right)^4}\\ = {\left[ {x + \left( { - \frac{1}{3}} \right)} \right]^4} = {x^4} + 4.{x^3}.{\left( { - \frac{1}{3}} \right)^1} + 6.{x^2}.{\left( { - \frac{1}{3}} \right)^2} + 4.x.{\left( { - \frac{1}{3}} \right)^3} + {\left( { - \frac{1}{3}} \right)^4}\\ = {x^4} - \frac{4}{3}{x^3} + \frac{2}{3}{x^2} - \frac{4}{27}x + \frac{1}{{81}}\end{array}\)
Chương 4. Ba định luật Newton. Một số lực trong thực tiễn
Đề kiểm tra 15 phút
Chương 1. Lịch sử và sử học, vai trò của sử học
Chủ đề 6. Lập kế hoạch tài chính cá nhân
Chủ đề 2: Thị trường và cơ chế thị trường
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10