PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 1

Bài 1 trang 156 SBT toán 9 tập 1

Đề bài

Cho hình chữ nhật ABCD có \(AD = 12cm\), \(CD = 16cm.\) Chứng minh rằng bốn điểm \(A, B, C, D\) cùng thuộc một đường tròn. Tính bán kính của đường tròn đó. 

Phương pháp giải - Xem chi tiết

+ Đường tròn là tập hợp các điểm cách điểm O cố định một khoảng bằng R không đổi (\(R>0\)), O gọi là tâm và R là bán kính.

+ Để chứng minh các điểm thuộc cùng một đường tròn ta chứng minh các điểm này cách đều một điểm.

Lời giải chi tiết

 

Gọi \(O\) là giao điểm của hai đường chéo \(AC\) và \(BD.\) Ta có: 

\(OA = OB = OC = OD\) (tính chất hình chữ nhật)

Vậy bốn điểm \(A, B, C, D\)  cùng nằm trên một đường tròn bán kính \(\dfrac{{AC}}{2}\)

Áp dụng định lí Pi-ta-go vào tam giác vuông ABC ta có:

\(\eqalign{
& A{C^2} = A{B^2} + B{C^2} = {16^2} + {12^2} \cr 
& = 256 + 144 = 400 \cr} \)

Suy ra: \(AC = \sqrt {400}  = 20\,(cm)\)

Vậy bán kính đường tròn là: \(OA = \dfrac{{AC}}{ 2} = \dfrac{{20}}{2} = 10\,(cm)\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved