Giải bài 1 trang 129 sách bài tập toán 10 - Chân trời sáng tạo

Đề bài

Hãy tìm phương sai, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lệ (nếu có) của mỗi mẫu số liệu sau:

a)     90;     56;     50;     45;     46;     48;     52;     43.

b)    19;     11;     1;       16;     19;     12;     14;     10;     11.

c)     6,7;    6,2;    9,7;    6,3;    6,8;    6,1;    6,2.

d)    0,79;  0,68;  0,35;  0,38;  0,05;  0,35.

Phương pháp giải - Xem chi tiết

Sắp xếp số liệu theo thứ tự không giảm và tìm khoảng biến thiên theo công thức\(R = {x_n} - {x_1}\)

Dùng kiến thức khoảng biến thiên và khoảng tứ phân vị, giá trị ngoại lệ đã học.

Tìm phương sai theo công thức \({S^2} = \frac{1}{n}\left( {{n_1}{x_1}^2 + {n_2}{x_2}^2 + ... + {n_k}{x_k}^2} \right) - {\overline x ^2}\)

Lời giải chi tiết

a)     Sắp xếp số liệu theo thứu tự không giảm, ta được: 43; 45; 46; 48; 50; 52; 56; 90.

Số cao nhất và thấp nhất lần lượt là 90 và 43 do đó khoảng biến thiên của dãy số liệu trên là: \(R = 90 - 43 = 47\)

Có \({Q_1} = 45,5;{Q_3} = 54\)\( \Rightarrow {\Delta _Q} = 54 - 45,5 = 8,5\)

Ta có \({Q_1} - 1,5.{\Delta _Q} = 32,75\) và \({Q_3} + 1,5.{\Delta _Q} = 66,75\) nên mẫu có 1 giá trị ngoại lệ là 90

Trung bình của mẫu số liệu là \(\overline x  = 53,75\)

Phương sai: \({S^2} = 202,6875\)

b)    Sắp xếp số liệu theo thứu tự không giảm, ta được: 1; 10; 11; 11; 12; 14; 16; 19; 19.

Số cao nhất và thấp nhất lần lượt là 19 và 1 do đó khoảng biến thiên của dãy số liệu trên là: \(R = 19 - 1 = 18\)

Có \({Q_1} = 11,5;{Q_3} = 17,5\)\( \Rightarrow {\Delta _Q} = 17,5 - 11,5 = 6\)

Ta có \({Q_1} - 1,5.{\Delta _Q} = 2,5\) và \({Q_3} + 1,5.{\Delta _Q} = 26,5\) nên mẫu có 1 giá trị ngoại lệ là 1.

Trung bình của mẫu số liệu là \(\overline x  = 12,56\)

Phương sai: \({S^2} = 171,996\)

c)     Sắp xếp số liệu theo thứu tự không giảm, ta được:

Số cao nhất và thấp nhất lần lượt là 90 và 43 do đó khoảng biến thiên của dãy số liệu trên là: \(R = 90 - 43 = 47\)

Có \({Q_1} = 45,5;{Q_3} = 54\)\( \Rightarrow {\Delta _Q} = 54 - 45,5 = 8,5\)

Ta có \({Q_1} - 1,5.{\Delta _Q} = 32,75\) và \({Q_3} + 1,5.{\Delta _Q} = 66,75\) nên mẫu có 1 giá trị ngoại lệ là

Trung bình của mẫu số liệu là \(\overline x  = 53,75\)

Phương sai: \({S^2} = 202,6875\)

d)    Sắp xếp số liệu theo thứu tự không giảm, ta được:

Số cao nhất và thấp nhất lần lượt là 90 và 43 do đó khoảng biến thiên của dãy số liệu trên là: \(R = 90 - 43 = 47\)

Có \({Q_1} = 45,5;{Q_3} = 54\)\( \Rightarrow {\Delta _Q} = 54 - 45,5 = 8,5\)

Ta có \({Q_1} - 1,5.{\Delta _Q} = 32,75\) và \({Q_3} + 1,5.{\Delta _Q} = 66,75\) nên mẫu có 1 giá trị ngoại lệ là

Trung bình của mẫu số liệu là \(\overline x  = 53,75\)

Phương sai: \({S^2} = 202,6875\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved