Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số.
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
Ôn tập chương III - Hệ hai phương trình bậc nhất hai ẩn
Đề kiểm 15 phút - Chương 3 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số 9
Bài 1. Hàm số y = ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số y = ax^2 (a ≠ 0).
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Ôn tập chương IV - Hàm số y = ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề kiểm tra 15 phút - Chương 4 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số 9
Đề bài
Đề bài
Bài 1: Giải phương trình :
a)\(\left( {9 - {x^2}} \right).\sqrt {2 - x} = 0\)
b) \(\sqrt {x - 1} .\sqrt {x + 4} = 6.\)
Bài 2: Tìm m để parabol (P ): \(y = - {1 \over 4}{x^2}\) và đường thẳng (d): \(y = mx - 2m - 1\) tiếp xúc với nhau. Tìm tọa độ tiếp điểm.
Bài 3: Tìm m để phương trình \({x^2} + mx + 1 = 0\) có hai nghiệm x1, x2 và thỏa mãn \({{{x_1}} \over {{x_2}}} + {{{x_2}} \over {{x_1}}} = 7.\)
Bài 4: Một xe ô tô đi từ A đến B cách nhau 80km. Vì khởi hành chậm 16 phút so với dự định nên phải tăng vận tốc thêm 10km/h so với dự định, vì vậy ô tô đến đúng giờ. Tính vận tốc dự định của ô tô.
LG bài 1
LG bài 1
Phương pháp giải:
Hai phương trình đã cho là 2 phương trình tích
Chú ý: Tìm điều kiện trước khi GPT
Lời giải chi tiết:
a) \(\left( {9 - {x^2}} \right)\sqrt {2 - x} = 0\)
\(\Leftrightarrow \left\{ \matrix{ 2 - x \ge 0 \hfill \cr \left[ \matrix{ 2 - x = 0 \hfill \cr 9 - {x^2} = 0 \hfill \cr} \right. \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ x \le 2 \hfill \cr \left[ \matrix{ x = 2 \hfill \cr x = \pm 3 \hfill \cr} \right. \hfill \cr} \right.\)
\(\Leftrightarrow \left[ \matrix{ x = 2 \hfill \cr x = - 3. \hfill \cr} \right.\)
b) \(\sqrt {x - 1} .\sqrt {x + 4} = 6\)
\(\Leftrightarrow \left\{ \matrix{ x \ge 1 \hfill \cr \sqrt {\left( {x - 1} \right)\left( {x + 4} \right)} = 6 \hfill \cr} \right.\)
\(\Leftrightarrow \left\{ \matrix{ x \ge 1 \hfill \cr {x^2} + 3x - 4 = 36 \hfill \cr} \right.\)
\( \Leftrightarrow \left\{ \matrix{ x \ge 1 \hfill \cr {x^2} + 3x - 40 = 0 \hfill \cr} \right. \)
\(\Leftrightarrow \left\{ \matrix{ x \ge 1 \hfill \cr \left[ \matrix{ x = - 8 \hfill \cr x = 5 \hfill \cr} \right. \hfill \cr} \right. \Leftrightarrow x = 5.\)
LG bài 2
LG bài 2
Phương pháp giải:
Xét phương trình hoành độ giao điểm của (P) và (d)
(P) và (d) tiếp xúc nhau khi và chỉ khi phương trình trên có nghiệm kép \( \Leftrightarrow \Delta = 0 \) giải ra tìm được m
Thế m vào pt ban đầu giải ra ta tìm đượcx=> tọa độ tiếp điểm
Lời giải chi tiết:
: Phương trình hoành độ điểm chung ( nếu có) của (P ) và (d) :
\( - {1 \over 4}{x^2} = mx - 2m - 1\)
\(\Leftrightarrow {x^2} + 4mx - 8m - 4 = 0\,\,\,\left( * \right)\)
(P ) và (d) tiếp xúc nhau khi và chỉ khi phương trình (*) có nghiệm kép
\( \Leftrightarrow \Delta ' = 0 \Leftrightarrow 4{m^2} + 8m + 4 = 0 \)\(\;\Leftrightarrow m = - 1.\)
Khi \(m = − 1\) : (*) \(\Leftrightarrow {x^2} - 4x + 4 = 0 \Leftrightarrow x = 2\)
Vậy tọa độ tiếp điểm là \(( 2; − 1).\)
LG bài 3
LG bài 3
Phương pháp giải:
Phương trình có nghiệm \(x_2;x_2\) \( \Leftrightarrow ∆ ≥ 0 \)
Sử dụng hệ thức vi-ét để tìm tổng và tích hai nghiệm
\({x_1} + {x_2} = - \frac{b}{a};{x_1}.{x_2} = \frac{c}{a}\)
Biến đổi biểu thức đã cho về tổng và tích hai nghiệm rồi thế hệ thức Vi-ét vào biểu thức trên ta tìm được m
Lời giải chi tiết:
Phương trình có nghiệm \(x_2;x_2\) \( \Leftrightarrow ∆ ≥ 0 \Leftrightarrow m^2– 4 ≥ 0 \Leftrightarrow\)\( \left| m \right| \ge 2\)
Theo định lí Vi-ét, ta có : \({x_1} + {x_2} = - m;\,\,\,\,\,\,{x_1}{x_2} = 1\)
Vậy : \({{{x_1}} \over {{x_2}}} + {{{x_2}} \over {{x_1}}} = 7 \Leftrightarrow {{x_1^2 + x_2^2} \over {{x_1}{x_2}}} = 7 \)
\(\Leftrightarrow {{{{\left( {{x_1} + {x_2}} \right)}^2} - 2{x_1}{x_2}} \over {{x_1}{x_2}}} = 7\)
\( \Leftrightarrow {m^2} - 2 = 7 \Leftrightarrow {m^2} = 9\)
\(\Leftrightarrow m = \pm 3\) ( nhận).
LG bài 4
LG bài 4
Phương pháp giải:
Để giải bài toán bằng cách lập phương trình ta làm theo các bước:
Bước 1: Lập phương trình
+ Chọn ẩn và đặt điều kiện cho ẩn
+ Biểu diễn tất cả các đại lượng khác qua ẩn vừa chọn.
+ Lập phương trình biểu thị mối quan hệ giữa các đại lượng.
Bước 2: Giải phương trình
Bước 3: Đối chiếu điều kiện rồi kết luận.
Lời giải chi tiết:
Gọi \(x\) là vận tốc dự định của xe ( \(x > 0;\; x\) tính bằng km/h).
Thời gian dự định là \({{80} \over x}\)( giờ). Khi tăng thêm 10km/h thì thời gian đi hết quãng đường là \({{80} \over {x + 10}}\)( giờ). Ta có phương trình :
\({{80} \over x} = {{80} \over {x + 10}} + {4 \over {15}}\) ( 16 phút = \({4 \over {15}}\)( giờ)
\( \Leftrightarrow x^2+ 10x -3000 = 0\)
\(\Leftrightarrow \left[ {\matrix{ {{\rm{x}} = 50\left( {{\text{nhận}}} \right)} \cr {{\rm{x}} = - 60\left( {{\text{loại}}} \right)} \cr } } \right.\)
Vậy vận tốc dự định là \(50\) km/h.
Bài 2. Dân số và gia tăng dân số
Đề thi vào 10 môn Văn Khánh Hòa
Bài 9: Làm việc có năng suất, chất lượng, hiệu quả
Đề thi giữa kì 1
Đề thi vào 10 môn Toán Quảng Ngãi