PHẦN HÌNH HỌC - TOÁN 9 TẬP 2

Đề kiểm tra 45 phút (1 tiết) - Đề số 5 - Chương 3 - Hình học 9

Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2
Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2

Đề bài

Đề bài

Bài 1: Trên tiếp tuyến tại A của đường tròn (O; R), lấy đoạn \(AI = R\sqrt 3 \).

a) Tính độ dài OI theo R.

b) Đường cao AH của ∆OAI cắt đường tròn (O) tại B. Chứng tỏ IB là tiếp tuyến của (O).

Bài 2: Cho đường tròn (O; R) và một điểm A ở ngoài đường tròn sao cho OA = 3R. Từ A vẽ hai tiếp tuyến AB, AC đến đường tròn ( B, C là hai tiếp điểm). Từ B vẽ đường thẳng song song với AC cắt (O) tại D ( D khác B). Đường thẳng AD cắt (O) tại E ( khác D).

a) Chứng minh: \(AB^2 = AE.AD\)

b) Chứng minh: \(BC.EC = AC.BE\)

c) Tính khoảng cách giữa hai đường thẳng BD và AC theo R.

LG bài 1

LG bài 1

Phương pháp giải:

Sử dụng:

+Định lý Py-ta-go

+ Định lí đường kính dây cung: Đường kính đi qua điểm chính giữa của dây cung thì vuông góc với dây căng cung ấy

+Hai tam giác bằng nhau

 

Lời giải chi tiết:

a) ∆OAI vuông tại A ( tính chẩt tiếp tuyến)

Ta có: \(OI = \sqrt {O{A^2} + A{I^2}}  = \sqrt {{R^2} + {{\left( {R\sqrt 3 } \right)}^2}}  = 2R\).

b) Có \(OH \bot AB\) (gt) nên H là trung điểm của AB ( định lí đường kính dây cung)

∆AOB cân có đường cao OH đồng thời là đường trung tuyến nên \(\widehat {{O_1}} = \widehat {{O_2}}\)

Xét ∆OBI và ∆OAI có :

+) OI cạnh chung,

+) \(\widehat {{O_1}} = \widehat {{O_2}}\) (cmt),

+) \(OB = OA ( = R)\)

Vậy \(∆OBI = ∆OAI\) (c.g.c) \(\Rightarrow \widehat {OBI} = \widehat {OAI} = 90^\circ \)

Chứng tỏ OB là tiếp tuyến của (O).

 

LG bài 2

LG bài 2

Phương pháp giải:

Sử dụng:

+Góc nội tiếp bằng góc giữa tiếp tuyến và dây cùng chắn 1 cung 

+Tam giác đồng dạng

+ Định lý Py-ta-go

+Hệ thức về cạnh và đường cao trong tam giác vuông

+

Lời giải chi tiết:

a) Ta có \(\widehat {ABE} = \widehat {BDE}\) ( góc giữa tiếp tuyến và một dây bằng góc nội tiếp cùng chắn cung EB)

Do đó ∆ABE và ∆ADB đồng dạng (g.g)

\( \Rightarrow \dfrac{{AD} }{ {AB}} = \dfrac{{AB} }{{AE}}\)

\( \Rightarrow A{B^2} = AE.AD\)

b) Nối CD.

Khi đó \(\widehat {DCx} = \widehat {CED}\) (góc giữa tiếp tuyến và một dây bằng góc nội tiếp cùng chắn cung CD)

BD // AC \( \Rightarrow \widehat {DCx} = \widehat {BDC}\) ( so le trong)

Do đó \(\widehat {BDC} = \widehat {CED}\) mà \(\widehat {CED} + \widehat {CEA} = 180^\circ \) và \(\widehat {BDC} + \widehat {BEC} = 180^\circ \) ( tổng hai góc đối của tứ giác BECD nội tiếp) \( \Rightarrow \widehat {CEA} = \widehat {BEC}\).

Lại có \(\widehat {EBC} = \widehat {ECA}\) (góc nội tiếp bằng góc giữa tiếp tuyến và một dây cùng chắn cung EC)

Do đó ∆BEC và ∆CEA đồng dạng (g.g)

\( \Rightarrow \dfrac{{BC}}{{AC}} = \dfrac{{BE} }{ {EC}}\)

\(\Rightarrow BC.EC = AC.BE\).

c) Gọi BH là khoảng cách giữa hai đường thẳng song song BD và AC.

Xét  tam giác vuông ACO, ta có :

\(AC = \sqrt {A{O^2} - C{O^2}}  = \sqrt {{{\left( {3R} \right)}^2} - {R^2}} \)\(\, = R\sqrt 8 \)

Gọi I là giao điểm của AO và BC ta có AO là đường trung trực của đoạn BC nên AO ^ BC tại I hay CI là đường cao của tam giác vuông ACO ta có : CI.AO = CA.CO ( hệ thức lượng)

\( \Rightarrow CI = \dfrac{{CA.CO} }{ {AO}} = \dfrac{{R\sqrt 8 .R} }{ {3R}} =\dfrac {{R\sqrt 8 } }{ 3} \)

\(\Rightarrow BC = {{2R\sqrt 8 } \over 3}\)

Xét tam giác vuông AIC ta có :

\(AI = \sqrt {A{C^2} - C{I^2}}  \)\(\,= \sqrt {{{\left( {R\sqrt 8 } \right)}^2} - {{\left( {{{R\sqrt 8 } \over 3}} \right)}^2}}  = {{8R} \over 3}\)

Hai tam giác vuông AIC và BHC có \(\widehat {ACI}\) chung nên :

∆AIC và ∆BHC đồng dạng (g.g)

\( \Rightarrow \dfrac{{BH} }{ {AI}} =\dfrac {{BC}}{ {AC}}\)

\( \Rightarrow BH = \dfrac{{AI.BC} }{ {AC}} = \dfrac{{{{8R} \over 3}.{{2R\sqrt 8 } \over 3}}}{ {R\sqrt 8 }} \)\(\,= \dfrac{{{{16{R^2}\sqrt 8 } \over 9}} }{{R\sqrt 8 }} = \dfrac{{16R}}{ 9}\)

Lưu ý : Ta có thể tính khoảng cách CK ( K là giao điểm của CO với BD).

 

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved