Bài 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
Bài 2. Tỉ số lượng giác của góc nhọn
Bài 3. Bảng lượng giác
Bài 4. Một số hệ thức về cạnh và góc trong tam giác vuông
Bài 5. Ứng dụng thực tế các tỉ số lượng giác của góc nhọn. Thực hành ngoài trời
Ôn tập chương I – Hệ thức lượng giác trong tam giác vuông
Đề kiểm tra 15 phút - Chương 1 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 1 - Hình học 9
Bài 1. Sự xác định của đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II – Đường tròn
Đề kiểm tra 15 phút - Chương 2 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Hình học 9
Đề bài
Đề bài
Cho hai đường tròn (O; R) và (O’; R’) tiếp xúc ngoài tại A. Một tiếp tuyến chung ngoài BC của (O) và (O’) (\(B ∈ (O), C ∈ (O’)\)).
a. Chứng minh rằng đường tròn đường kính BC tiếp xúc với đường thẳng OO’ và đường tròn đường kính OO’ tiếp xúc với đường thẳng BC.
b. Tính BC theo R và R’
c. Đường tròn (H; r) tiếp xúc với cả hai đường tròn (O), (O’) và tiếp xúc với BC tại M. Tính bán kính r theo R và R’.
LG ý a
LG ý a
Phương pháp giải:
Sử dụng:
-Tính chất hai tiếp tuyến cắt nhau
-Đường trung bình của hình thang
- Đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính là tiếp tuyến của đường tròn đó
Lời giải chi tiết:
a. Gọi I là giao điểm của tiếp tuyến tại A và tiếp tuyến chung BC, ta có \(IA = IB = IC\) (tính chất tiếp tuyến cắt nhau).
Ta có: O, A, O’ thẳng hàng nên \(IA ⊥ OO’\)
Chứng tỏ đường tròn tâm I đường kính BC tiếp xúc với đường thẳng OO’.
Gọi K là trung điểm của OO’ \(⇒\) IK là đường trung bình của hình thang BOO’C \(⇒\) IK // OB // O’C hay \(IK ⊥ BC.\)
Mặt khác : \(IK = {{OB + O'C} \over 2} = {{R + R'} \over 2} = {{OO'} \over 2}\)\( \Rightarrow IK = OK = O'K\)
Suy ra BC là tiếp tuyến của đường tròn tâm K đường kính OO'
Do đó đường tròn tâm K đường kính OO’, tiếp xúc với BC tại I.
LG ý b
LG ý b
Phương pháp giải:
Sử dụng:
-Hai tia phân giác của hai góc kề bù tạo thành 1 góc vuông
-Hệ thức về cạnh và đường cao trong tam giác vuông
Lời giải chi tiết:
b. Ta có: OI, O’I theo thứ tự là phân giác của các góc BIA và CIA nên \(OI ⊥ O’I\) hay ∆OIO’ vuông tại I có đường cao IA.
\(I{A^2} = OA.O'A = R.R'\) (định lí 2) hay \(IA = \sqrt {R.R'} \Rightarrow BC = 2\sqrt {R.R'} \)
LG ý c
LG ý c
Phương pháp giải:
Sử dụng kết quả của ý b
Lời giải chi tiết:
c. Ta có: BM là tiếp tuyến chung ngoài của (O) và (H) nên:
\(BM = 2\sqrt {R.r} \) (chứng minh như câu b)
Tương tự ta có : \(CM = 2\sqrt {R'.r} ,\) mà \(BC = BM + MC\)
\(\eqalign{ & \Rightarrow 2\sqrt {R.R'} = 2\sqrt {R.r} + 2\sqrt {R'.r} \cr& \Rightarrow \sqrt {R.R'} = \sqrt r \left( {\sqrt R + \sqrt {R'} } \right) \cr & \Rightarrow \sqrt r = {{\sqrt {R.R'} } \over {\sqrt R + \sqrt {R'} }} \cr&\Rightarrow r = {{R.R'} \over {R + R' + 2\sqrt {R.R'} }} \cr} \)
Đề thi vào 10 môn Văn Thái Bình
Unit 4: Life in the past
PHẦN MỘT. LỊCH SỬ THẾ GIỚI HIỆN ĐẠI TỪ NĂM 1945 ĐẾN NAY
Bài 29
CHƯƠNG I. SINH VẬT VÀ MÔI TRƯỜNG