PHẦN HÌNH HỌC - TOÁN 9 TẬP 2

Đề kiểm tra 45 phút (1 tiết) - Đề số 2 - Chương 3 - Hình học 9

Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2
Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2

Đề bài

Đề bài

Bài 1: Cho điểm M nằm ngoài đường tròn (O; R). Vẽ tiếp tuyến MA ( A là tiếp điểm), cát tuyến MBC ( B nằm giữa M và C) và O nằm trong góc AMC. Lấy I là trung điểm của BC. Tia OI cắt cung nhỏ BC tại N, AN cắt BC tại D.

a)   Chứng minh AD là phân giác của góc BAC.

b)   Chứng minh : MD= MB.MC.

c)   Gọi H, K là hình chiếu của N lên AB và AC. Chứng tỏ ba điểm H, I, K thẳng hàng ( đường thẳng Sim-Sơn).

Bài 2: Cho đường tròn (O; R) và (O’; R’) tiếp xúc ngoài nhau tại A. Qua A vẽ đường thẳng cắt (O) tại B và cắt (O’) tại C.

a)   Chứng tỏ OB // O’C.

b)   Chứng tỏ tỉ số diện tích hai hình quạt nằm trong góc ở tâm \(\widehat {AOB}\) và \(\widehat {AO'C}\) của hai hình tròn không đổi khi cát tuyến BAC quạt quanh A.

LG bài 1

LG bài 1

Phương pháp giải:

Sử dụng:

+Đường kính đi qua trung điểm của dây cung thì vuông góc với dây ấy

+Góc nội tiếp bằng góc giữa tiếp tuyến và dây cùng chắn 1 cung 

+Số đo góc có đỉnh bên trong đường tròn

+Số đo góc tạo bởi tiếp tuyến và dây

+Hai góc nội tiếp cùng chắn 1 cung thì bằng nhau

+Tứ giác nội tiếp

Lời giải chi tiết:

a)    I là trung điểm BC \(\Rightarrow  OI \bot BC  \Rightarrow  \overparen{ NB} = \overparen{ NC}\)

Do đó \(\widehat {BAN} = \widehat {CAN}\) hay AD là phân giác của góc \(\widehat {BAC}\).

b)   Xét ∆MAB và ∆MCA có:

+) \(\widehat M\) chung,

+) \(\widehat {MAB} = \widehat {MCA}\) (góc giữa tiếp tuyến và một dây bằng góc nội tiếp cùng chắn cung AB)

Do đó ∆MAB và ∆MCA đồng dạng (g.g)

\( \Rightarrow \dfrac{{MA}}{ {MC}} = \dfrac{{MB} }{{MA}}\)

\( \Rightarrow  MA^2= MB.MC\)                  (1)

Lại có \(\widehat {MDA} = \dfrac{{sđ\overparen{AB} +sđ\overparen{ NC}}}{2}\) ( góc có đỉnh bên trong đường tròn)

          \(\widehat {MAN} = \dfrac{{sđ\overparen{AB} + sđ\overparen{BN}}}{2}\)  ( góc giữa tiếp tuyến và một dây)

 Mà \(\overparen{ NC} = \overparen{ NB} \)\(\,\Rightarrow  \widehat {MDA} = \widehat {MAN}\) hay ∆MAD cân tại M

\( \Rightarrow  MA = MD\)              (2)

Thay (2) vào (1), ta có : \(MD^2 = MB.MC.\)

c)   Tứ giác HBIN nội tiếp ( \(\widehat {NHB} + \widehat {NIB} = 180^\circ ),\)

\(\widehat {HBN} = \widehat {HIN}\)          (1)    ( các góc nội tiếp cùng chắn cung HN)

mà \(\widehat {HBN} = \widehat {ACN}\)      (2)     ( cùng bù với \(\widehat {ABN}\))

Mặt khác tứ giác NIKC nội tiếp ( \(\widehat {NIC} = \widehat {NKC} = 90^\circ \))

\( \Rightarrow \widehat {ACN} + \widehat {NIK} = 180^\circ \)     (3)

Từ (1), (2) và (3) \( \Rightarrow \widehat {HIN} + \widehat {NIK} = 180^\circ \) chứng tỏ ba điểm H, I, K thẳng hàng.

 

LG bài 2

LG bài 2

Phương pháp giải:

+Tính chất tam giác cân

Sử dung:

\({S_{\overparen{AOB}}} = \dfrac{{\pi {R^2}n} }{ {360}}\)

 \({S_{\overparen{AO'C}}} = \dfrac{{\pi R{'^2}n} }{{360}}\)

Lời giải chi tiết:

a) Ta có \(\widehat {{A_1}} = \widehat {{A_2}}\) ( đối đỉnh)

∆BOA cân \( \Rightarrow \widehat {{A_1}} = \widehat B\).

Tương tự \(\widehat {{A_2}} = \widehat C \Rightarrow \widehat B = \widehat C\)

Do đó OB // O’C ( cặp góc so le trong bằng nhau).

b)   Ta có : \({S_{\overparen{AOB}}} = \dfrac{{\pi {R^2}n} }{ {360}}\)

                 \({S_{\overparen{AO'C}}} = \dfrac{{\pi R{'^2}n} }{{360}}\)

\( \Rightarrow \dfrac{{{S_{\overparen{AOB}}}}}{{{S_{\overparen{AO'C}}}}} = \dfrac{{{R^2}} }{ {R{'^2}}}\) ( không đổi).

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved