PHẦN ĐẠI SỐ - TOÁN 9 TẬP 2

Đề kiểm tra 45 phút (1 tiết) - Đề số 2 - Chương 3 - Đại số 9

Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2
LG bài 3
LG bài 4
Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2
LG bài 3
LG bài 4

Đề bài

Đề bài

Bài 1: Giải hệ phương trình :

a)\(\left\{ \matrix{  2x + 3y = 4 \hfill \cr  x + 2y = 5 \hfill \cr}  \right.\)                        

b) \(\left\{ \matrix{  2x - y =  - 4 \hfill \cr  6x + y = 7. \hfill \cr}  \right.\)

Bài 2: Tìm a để hệ sau có nghiệm duy nhất : \(\left\{ \matrix{  ax + y = a \hfill \cr  x + ay = 1. \hfill \cr}  \right.\)

Bài 3: Hai hệ phương trình sau có tương đương với nhau không ?

\(\left\{ \matrix{  2x + y = 1 \hfill \cr  2x + y = 2 \hfill \cr}  \right.\)   và \(\left\{ \matrix{  x - y = 3 \hfill \cr  x - y = 1. \hfill \cr}  \right.\)

Bài 4: Một mảnh vườn hình chữ nhật có chu vi là \(140m\). Ba lần chiều rộng lớn hơn chiều dài là \(10m.\) Tính chiều dài và chiều rộng của mảnh vườn.

LG bài 1

LG bài 1

Phương pháp giải:

Giải hệ bằng phương pháp thế hoặc cộng đại số

Lời giải chi tiết:

Bài 1: a)

\(\left\{ \matrix{  2x + 3y = 4 \hfill \cr  x + 2y = 5 \hfill \cr}  \right. \)\(\;\Leftrightarrow \left\{ \matrix{  2\left( {5 - 2y} \right) + 3y = 4 \hfill \cr  x = 5 - 2y \hfill \cr}  \right. \)

\(\Leftrightarrow \left\{ \matrix{  y = 6 \hfill \cr  x = 5 - 2y \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  x =  - 7 \hfill \cr  y = 6 \hfill \cr}  \right.\)

Hệ có nghiệm duy nhất : \(( − 7; 6).\)

b)\(\left\{ \matrix{  2x - y =  - 4 \hfill \cr  6x + y = 7 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  8x = 3 \hfill \cr  2x - y =  - 4 \hfill \cr}  \right.\)\(\;\Leftrightarrow \left\{ \matrix{  x = {3 \over 8} \hfill \cr  y = {{19} \over 4}. \hfill \cr}  \right.\)

Hệ có nghiệm duy nhất : \(\left( {{3 \over 8};{{19} \over 4}} \right).\)

LG bài 2

LG bài 2

Phương pháp giải:

Rút x từ pt thứ nhất thế vào phương trình thứ 2 ta được phương trình bậc 1 nhất ẩn với tham số m

Hệ phương trình có nghiệm duy nhất khi pt bậc nhất trên có nghiệm duy nhất

Lời giải chi tiết:

Bài 2: Ta có : \(x + ay = 1  \Leftrightarrow   x = 1 – ay.\)

Thế x vào phương trình thứ nhất, ta được :

\(a\left( {1 - ay} \right) + y = a\)

\(\Leftrightarrow \left( {1 - {a^2}} \right)y = 0\,\,\,\,\,\left( * \right)\)

Phương trình (*) có nghiệm duy nhất \( \Leftrightarrow 1 - {a^2} \ne 0\)

\( \Leftrightarrow \left( {1 - a} \right)\left( {1 + a} \right) \ne 0 \Leftrightarrow a \ne  \pm 1\)

Vậy hệ có nghiệm duy nhất khi và chỉ khi \(a \ne  \pm 1.\)        

LG bài 3

LG bài 3

Phương pháp giải:

Ta chỉ ra hai hệ đã cho vô nghiệm từ đó suy ra chúng tương đương với nhau

Lời giải chi tiết:

Bài 3: Ta thấy mỗi hệ đã cho đều vô nghiệm vì trong mỗi hệ biểu thị cho hai đường thẳng song song, vậy hai hệ tương đương với nhau.

LG bài 4

LG bài 4

Phương pháp giải:

Gọi \(x, y\) lần lượt là chiều dài và chiều rộng của mảnh vườn ( \(x > 0; y > 0; x, y \) )

Từ giả thiết:

+Chu vi mảnh vườn bằng 140m ta lập được pt thứ nhất
+ Ba lần chiều rộng lớn hơn chiều dài 10m ta lập được phương trình thứ hai

Ta lập được hệ phương trình, giải, kiểm tra điều kiện rồi kết luận

Lời giải chi tiết:

Bài 4: Gọi \(x, y\) lần lượt là chiều dài và chiều rộng của mảnh vườn ( \(x > 0; y > 0; x, y \) tính bằng m). Chu vi là \(140m\), nên ta có phương trình :

\(2\left( {x + y} \right) = 140 \Leftrightarrow x + y = 70\)

 Ba lần chiều rộng lớn hơn chiều dài 10m, nên ta có phương trình :

\(3y – x = 10\)

Vậy, ta có hệ :

\(\left\{ \matrix{  x + y = 70 \hfill \cr  3y - x = 10 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  4y = 80 \hfill \cr  x + y = 70 \hfill \cr}  \right. \)

\(\Leftrightarrow \left\{ \matrix{  y = 20 \hfill \cr  x = 70 - y \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  x = 50 \hfill \cr  y = 20 \hfill \cr}  \right.\)

Vậy chiều dài và chiều rộng của mảnh vườn lần lượt là \(50\;m\) và \(20\;m\).

 

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved