Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số.
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
Ôn tập chương III - Hệ hai phương trình bậc nhất hai ẩn
Đề kiểm 15 phút - Chương 3 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số 9
Bài 1. Hàm số y = ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số y = ax^2 (a ≠ 0).
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Ôn tập chương IV - Hàm số y = ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề kiểm tra 15 phút - Chương 4 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số 9
Đề bài
Đề bài
Bài 1: Giải hệ phương trình :
a)\(\left\{ \matrix{ 2x + 3y = 4 \hfill \cr x + 2y = 5 \hfill \cr} \right.\)
b) \(\left\{ \matrix{ 2x - y = - 4 \hfill \cr 6x + y = 7. \hfill \cr} \right.\)
Bài 2: Tìm a để hệ sau có nghiệm duy nhất : \(\left\{ \matrix{ ax + y = a \hfill \cr x + ay = 1. \hfill \cr} \right.\)
Bài 3: Hai hệ phương trình sau có tương đương với nhau không ?
\(\left\{ \matrix{ 2x + y = 1 \hfill \cr 2x + y = 2 \hfill \cr} \right.\) và \(\left\{ \matrix{ x - y = 3 \hfill \cr x - y = 1. \hfill \cr} \right.\)
Bài 4: Một mảnh vườn hình chữ nhật có chu vi là \(140m\). Ba lần chiều rộng lớn hơn chiều dài là \(10m.\) Tính chiều dài và chiều rộng của mảnh vườn.
LG bài 1
LG bài 1
Phương pháp giải:
Giải hệ bằng phương pháp thế hoặc cộng đại số
Lời giải chi tiết:
Bài 1: a)
\(\left\{ \matrix{ 2x + 3y = 4 \hfill \cr x + 2y = 5 \hfill \cr} \right. \)\(\;\Leftrightarrow \left\{ \matrix{ 2\left( {5 - 2y} \right) + 3y = 4 \hfill \cr x = 5 - 2y \hfill \cr} \right. \)
\(\Leftrightarrow \left\{ \matrix{ y = 6 \hfill \cr x = 5 - 2y \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ x = - 7 \hfill \cr y = 6 \hfill \cr} \right.\)
Hệ có nghiệm duy nhất : \(( − 7; 6).\)
b)\(\left\{ \matrix{ 2x - y = - 4 \hfill \cr 6x + y = 7 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ 8x = 3 \hfill \cr 2x - y = - 4 \hfill \cr} \right.\)\(\;\Leftrightarrow \left\{ \matrix{ x = {3 \over 8} \hfill \cr y = {{19} \over 4}. \hfill \cr} \right.\)
Hệ có nghiệm duy nhất : \(\left( {{3 \over 8};{{19} \over 4}} \right).\)
LG bài 2
LG bài 2
Phương pháp giải:
Rút x từ pt thứ nhất thế vào phương trình thứ 2 ta được phương trình bậc 1 nhất ẩn với tham số m
Hệ phương trình có nghiệm duy nhất khi pt bậc nhất trên có nghiệm duy nhất
Lời giải chi tiết:
Bài 2: Ta có : \(x + ay = 1 \Leftrightarrow x = 1 – ay.\)
Thế x vào phương trình thứ nhất, ta được :
\(a\left( {1 - ay} \right) + y = a\)
\(\Leftrightarrow \left( {1 - {a^2}} \right)y = 0\,\,\,\,\,\left( * \right)\)
Phương trình (*) có nghiệm duy nhất \( \Leftrightarrow 1 - {a^2} \ne 0\)
\( \Leftrightarrow \left( {1 - a} \right)\left( {1 + a} \right) \ne 0 \Leftrightarrow a \ne \pm 1\)
Vậy hệ có nghiệm duy nhất khi và chỉ khi \(a \ne \pm 1.\)
LG bài 3
LG bài 3
Phương pháp giải:
Ta chỉ ra hai hệ đã cho vô nghiệm từ đó suy ra chúng tương đương với nhau
Lời giải chi tiết:
Bài 3: Ta thấy mỗi hệ đã cho đều vô nghiệm vì trong mỗi hệ biểu thị cho hai đường thẳng song song, vậy hai hệ tương đương với nhau.
LG bài 4
LG bài 4
Phương pháp giải:
Gọi \(x, y\) lần lượt là chiều dài và chiều rộng của mảnh vườn ( \(x > 0; y > 0; x, y \) )
Từ giả thiết:
+Chu vi mảnh vườn bằng 140m ta lập được pt thứ nhất
+ Ba lần chiều rộng lớn hơn chiều dài 10m ta lập được phương trình thứ hai
Ta lập được hệ phương trình, giải, kiểm tra điều kiện rồi kết luận
Lời giải chi tiết:
Bài 4: Gọi \(x, y\) lần lượt là chiều dài và chiều rộng của mảnh vườn ( \(x > 0; y > 0; x, y \) tính bằng m). Chu vi là \(140m\), nên ta có phương trình :
\(2\left( {x + y} \right) = 140 \Leftrightarrow x + y = 70\)
Ba lần chiều rộng lớn hơn chiều dài 10m, nên ta có phương trình :
\(3y – x = 10\)
Vậy, ta có hệ :
\(\left\{ \matrix{ x + y = 70 \hfill \cr 3y - x = 10 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ 4y = 80 \hfill \cr x + y = 70 \hfill \cr} \right. \)
\(\Leftrightarrow \left\{ \matrix{ y = 20 \hfill \cr x = 70 - y \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ x = 50 \hfill \cr y = 20 \hfill \cr} \right.\)
Vậy chiều dài và chiều rộng của mảnh vườn lần lượt là \(50\;m\) và \(20\;m\).
CHƯƠNG 5. DẪN XUẤT CỦA HIDROCACBON - POLIME
Tải 30 đề thi học kì 2 của các trường Toán 9
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Sinh học lớp 9
Câu hỏi tự luyện Tiếng Anh lớp 9 cũ
Đề thi giữa kì 2 - Sinh 9