PHẦN HÌNH HỌC - TOÁN 9 TẬP 2

Đề kiểm tra 15 phút - Đề số 9 - Bài 7 - Chương 3 - Hình học 9

Đề bài

M là một điểm thuộc cung nhỏ BC. Tiếp tuyến tại M cắt AB, AC lần lượt ở D và E. Gọi I và K lần lượt là giao điểm của OD, OE với BC. Chứng minh rằng tứ giác OBDK nội tiếp.

Phương pháp giải - Xem chi tiết

Chứng minh tứ giác OBDK có 1 góc trong bằng 1 góc ngoài không kề với nó  (\( \widehat {DOE} = \widehat {ABC}\))

Lời giải chi tiết

 

Dễ thấy tứ giác ABOC nội tiếp ( vì \(\widehat {ABO} = \widehat {ACO} = 90^\circ \) tính chất tiếp tuyến) \( \Rightarrow \widehat {BAC} + \widehat {BOC} = 180^\circ \). Do đó \(\widehat {BOC} = 180^\circ  - \widehat A\).

Theo (tính chất hai tiếp tuyến cắt nhau, ta có OD, OE lần lượt là phân giác của hai góc kề \(\widehat {BOM}\) và \(\widehat {MOC}\) nên \(\widehat {DOE} =\dfrac {{180^\circ  - \widehat A}}{ 2}\)         (1)

Mặt khác : ∆ABC cân ( AB = AC) nên \(\widehat {ABC} = \widehat {ACB} = \dfrac{{180^\circ  - \widehat A} }{ 2}\)    (2)

Từ (1) và (2) \( \Rightarrow \widehat {DOE} = \widehat {ABC}\) hay  

Do đó bốn điểm O, B, K, D cùng nằm trên một đường tròn, hay tứ giác OBDK nội tiếp.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved