Bài 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
Bài 2. Tỉ số lượng giác của góc nhọn
Bài 3. Bảng lượng giác
Bài 4. Một số hệ thức về cạnh và góc trong tam giác vuông
Bài 5. Ứng dụng thực tế các tỉ số lượng giác của góc nhọn. Thực hành ngoài trời
Ôn tập chương I – Hệ thức lượng giác trong tam giác vuông
Đề kiểm tra 15 phút - Chương 1 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 1 - Hình học 9
Bài 1. Sự xác định của đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II – Đường tròn
Đề kiểm tra 15 phút - Chương 2 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Hình học 9
Đề bài
Đề bài
Bài 1. Cho góc nhọn \(α\), biết \(\sin \alpha = {2 \over 3}.\) Không tính số đo góc \(α\), hãy tính \(\cos α, \tanα, \cotα.\)
Bài 2. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 10cm, BH = 5cm, chứng minh rằng : tanB = 3tanC.
LG bài 1
LG bài 1
Phương pháp giải:
Sử dụng:
\(\begin{array}{l}
{\sin ^2}\alpha + {\cos ^2}\alpha = 1\\
\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}\\
\tan \alpha .\cot \alpha = 1
\end{array}\)
Lời giải chi tiết:
Ta có: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)
\(\Rightarrow \cos \alpha = \sqrt {1 - {{\sin }^2}\alpha } = \sqrt {1 - {{\left( {{2 \over 3}} \right)}^2}}\)\(\, = {{\sqrt 5 } \over 3}\)
\(\tan \alpha = {{\sin \alpha } \over {\cos \alpha }} = {2 \over 3}:{{\sqrt 5 } \over 3} = {{2\sqrt 5 } \over 5} \)
\(\Rightarrow \cot \alpha = \frac{1}{{\tan \alpha }} = {{\sqrt 5 } \over 2}\)
LG bài 2
LG bài 2
Phương pháp giải:
Sử dụng hệ thức lượng trong tam giác vuông và tỉ số lượng giác của góc nhọn.
Lời giải chi tiết:
Ta có: \(∆ABC\) vuông, có đường cao AH
\( \Rightarrow A{B^2} = BC.BH\)
\(\Rightarrow BC = {{A{B^2}} \over {BH}} = {{{{10}^2}} \over 5} = 20\) (cm)
Do đó: \(HC = BC - BH = 20 - 5 = 15\,\left( {cm} \right)\)
\(∆AHB\) vuông có: \(\tan B = {{AH} \over {BH}} = {{AH} \over 5}\)
\(∆AHC\) vuông có: \(\tan C = {{AH} \over {CH}} = {{AH} \over {15}}\)
Do đó \({{\tan B} \over {\tan C}} = {{AH} \over 5}:{{AH} \over {15}} = 3 \)
\(\Rightarrow \tan B = 3\tan C\)
Bài 40. Thực hành: Đánh giá tiềm năng kinh tế của các đảo ven bờ và tìm hiểu về ngành công nghiệp dầu khí
SINH VẬT VÀ MÔI TRƯỜNG
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Giáo dục công dân lớp 9
Đề kiểm tra 1 tiết - Học kì 2 - Sinh 9
Đề thi vào 10 môn Toán Yên Bái