Bài 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
Bài 2. Tỉ số lượng giác của góc nhọn
Bài 3. Bảng lượng giác
Bài 4. Một số hệ thức về cạnh và góc trong tam giác vuông
Bài 5. Ứng dụng thực tế các tỉ số lượng giác của góc nhọn. Thực hành ngoài trời
Ôn tập chương I – Hệ thức lượng giác trong tam giác vuông
Đề kiểm tra 15 phút - Chương 1 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 1 - Hình học 9
Bài 1. Sự xác định của đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II – Đường tròn
Đề kiểm tra 15 phút - Chương 2 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Hình học 9
Đề bài
Cho nửa đường tròn tâm O đường kính AB. Trên cùng nửa mặt phẳng có bờ là đường thẳng AB, vẽ các tiếp tuyến Ax, By với (O) (A, B là các tiếp điểm). Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt Ax, By lần lượt tại C và D. Gọi N là giao điểm của AD và BC. Chứng minh:
a. \(CD = CA + DB\)
b. \(MN ⊥ AB.\)
Phương pháp giải - Xem chi tiết
a.Sử dụng: Tính chất hai tiếp tuyến cắt nhau
b.Sử dụng: Định lý Talet
Lời giải chi tiết
a. Ta có: \(CA = CM, DB = DM\) (tính chất hai tiếp tuyến cắt nhau).
Mà \(CD = CM + MD \)\(\;⇒ CD = CA + DB.\)
b. Ta có: Ax, By là hai tiếp tuyến của (O) nên Ax // By (cùng vuông góc AB)
Theo định lí Ta-lét, ta có:
\(\eqalign{ & {{CA} \over {DB}} = {{NC} \over {NB}}\cr&\text{Mà }\,CA = CM,DB = DM \cr & \Rightarrow {{CM} \over {DM}} = {{NC} \over {NB}} \cr} \)
Theo Định lí Ta-lét đảo \(⇒ MN // BD\)
Mà \(BD ⊥ AB ⇒ MN ⊥ AB.\)
Đề ôn tập học kì 1 – Có đáp án và lời giải
ĐỊA LÍ ĐỊA PHƯƠNG
Bài 32
Đề thi vào 10 môn Văn Đà Nẵng
Đề thi vào 10 môn Văn Hải Phòng