PHẦN HÌNH HỌC - TOÁN 8 TẬP 1

Đề kiểm tra 15 phút - Đề số 7 - Bài 9, 10 - Chương 1 - Hình học 8.

Đề bài

Tìm tập hợp (quỹ tích) các điểm cách đều hai đường thẳng song song cho trước.

Phương pháp giải - Xem chi tiết

Sử dụng: 

Các điểm cách đường thẳng \(b\) một khoảng bằng \(h\) nằm trên hai đường thẳng song song với \(b\) và cách \(b\) một khoảng bằng \(h.\)

Lời giải chi tiết

 

Gọi \({a_1},{a_2}\) là hai đường thẳng song song cho trước và h là khoảng cách giữa hai đường thẳng đó. Giả sử I là điểm cách đều hai đường thẳng và \({h_1};{h_2}\) là khoảng cách từ I đến hai đường thẳng đó.

Ta có \({I_1}{I_2} = h \Rightarrow {h_1} = \dfrac{h }{ 2}\) (không đổi). Vậy I nằm trên đường thẳng a cách đường thẳng \({a_1}\) một khoảng bằng \(\dfrac{h }{2}.\)

Bây giờ: Lấy một điểm H thuộc đường thẳng a, dựng \(H{H_1} \bot {a_1}\) . Ta có \({I_1}{H_1}HI\) là hình chữ nhật nên \(H{H_1} = {H_1} = \dfrac{h }{ 2}.\) Do đó điểm H cách đều đường thẳng \({a_1}.\) Tương tự đối với đường thẳng \({a_2}.\)

Vậy tập hợp các điểm cách đều hai đường thẳng song song cho trước là một đường thẳng song song với hai đường thẳng đã cho và cách đều hai đường thẳng đã cho.

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved