Bài 1. Tứ giác
Bài 2. Hình thang
Bài 3. Hình thang cân
Bài 4. Đường trung bình của tam giác, của hình thang
Bài 5. Dựng hình bằng thước và compa. Dựng hình thang
Bài 6. Đối xứng trục
Bài 7. Hình bình hành
Bài 8. Đối xứng tâm
Bài 9. Hình chữ nhật
Bài 10. Đường thẳng song song với một đường thẳng cho trước
Bài 11. Hình thoi
Bài 12. Hình vuông
Ôn tập chương I. Tứ giác
Đề kiểm tra 15 phút - Chương 1
Đề kiểm tra 45 phút (1 tiết) - Chương 1
Đề bài
Tìm tập hợp (quỹ tích) các điểm cách đều hai đường thẳng song song cho trước.
Phương pháp giải - Xem chi tiết
Sử dụng:
Các điểm cách đường thẳng \(b\) một khoảng bằng \(h\) nằm trên hai đường thẳng song song với \(b\) và cách \(b\) một khoảng bằng \(h.\)
Lời giải chi tiết
Gọi \({a_1},{a_2}\) là hai đường thẳng song song cho trước và h là khoảng cách giữa hai đường thẳng đó. Giả sử I là điểm cách đều hai đường thẳng và \({h_1};{h_2}\) là khoảng cách từ I đến hai đường thẳng đó.
Ta có \({I_1}{I_2} = h \Rightarrow {h_1} = \dfrac{h }{ 2}\) (không đổi). Vậy I nằm trên đường thẳng a cách đường thẳng \({a_1}\) một khoảng bằng \(\dfrac{h }{2}.\)
Bây giờ: Lấy một điểm H thuộc đường thẳng a, dựng \(H{H_1} \bot {a_1}\) . Ta có \({I_1}{H_1}HI\) là hình chữ nhật nên \(H{H_1} = {H_1} = \dfrac{h }{ 2}.\) Do đó điểm H cách đều đường thẳng \({a_1}.\) Tương tự đối với đường thẳng \({a_2}.\)
Vậy tập hợp các điểm cách đều hai đường thẳng song song cho trước là một đường thẳng song song với hai đường thẳng đã cho và cách đều hai đường thẳng đã cho.
Bài 40. Thực hành: Đọc lát cắt địa lí tự nhiên tổng hợp
Unit 4: Our Past - Quá khứ của chúng ta
Chủ đề VI. Nhiệt
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Toán lớp 8
Bài 32
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8