PHẦN HÌNH HỌC - TOÁN 9 TẬP 2

Đề kiểm tra 15 phút - Đề số 6 - Bài 7 - Chương 3 - Hình học 9

Đề bài

Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm A và B. Gọi M là điểm tùy ý trên đường thẳng AB, nằm ngoài đoạn AB. Vẽ qua M hai cát tuyến MCD và MC’D’ với (O) và (O’). Chứng minh tứ giác CDD’C’ nội tiếp.

Phương pháp giải - Xem chi tiết

Sử dụng tam giác đồng dạng, chứng minh tứ giác CDD'C' có 1 góc trong bằng góc ngoài tại đỉnh đối diện

Lời giải chi tiết

 

Ta có tứ giác ABCD nội tiếp trong đường tròn (O) nên \(\widehat {CDA} = \widehat {CBM}\) ( cùng bù với \(\widehat {ABC}\)).

Do đó \(∆MBC\) đồng dạng \(∆MDA \) (g.g)

\( \Rightarrow \dfrac{{MA}}{{MC}} =\dfrac {{MD} }{ {MB}}\)

\( \Rightarrow  MA.MB = MC.MD\)

Chứng minh tương tự :

\(MA.MB = MC’.MD’\)

\( \Rightarrow  MC.MD = MC’.MD’\)

Do đó \(∆MCC’\) đồng dạng \(∆MD’D\) (g.g)   

\( \Rightarrow \widehat {MCC'} = \widehat {MD'D}\)

Vậy tứ giác CDD’C’ nội tiếp.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved