PHẦN ĐẠI SỐ - TOÁN 9 TẬP 2

Đề kiểm tra 15 phút - Đề số 6 - Bài 6 - Chương 4 - Đại số 9

Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2
Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2

Đề bài

Bài 1: Cho phương trình \({x^2} - 2mx + {m^2} - m + 1 = 0\)

a) Tìm m để phương trình có hai nghiệm phân biệt.

b) Với điều kiện m tìm được ở câu a), tìm giá trị nhỏ nhất của biểu thức \(A = {x_1}{x_2} - {x_1} - {x_2}.\)

Bài 2: Cho phương trình \({x^2} - 2mx - 1 = 0.\) Tìm m để \(x_1^2 + x_2^2 - {x_1}{x_2} = 7,\) ở đó \(x_1;x_2\) là hai nghiệm của phương trình.

LG bài 1

Phương pháp giải:

a.Phương trình có hai nghiệm phân biệt \( \Leftrightarrow \Delta ' > 0 \)

b.Biến đổi A đưa về tổng và tích 2 nghiệm, thế hệ thức vi-et vào A rồi biện luận tìm GTNN của A

Lời giải chi tiết:

Bài 1:

a) Phương trình có hai nghiệm phân biệt \( \Leftrightarrow \Delta ' > 0 \Leftrightarrow m - 1 > 0 \Leftrightarrow m > 1.\)

b) Với \(m > 1\), phương trình có hai nghiệm \(x_1;x_2\).

Theo định lí Vi-ét, ta có : \(\left\{ \matrix{  {x_1} + {x_2} = 2m \hfill \cr  {x_1}{x_2} = {m^2} - m + 1 \hfill \cr}  \right.\)

Khi đó \(A = {x_1}{x_2} - {x_1} - {x_2} \)\(\;= {x_1}{x_2} - \left( {{x_1} + {x_2}} \right) \)\(\;= {m^2} - 3m + 1 \)\(\;= {\left( {m - {3 \over 2}} \right)^2} - {5 \over 4} \ge  - {5 \over 4}\)

Vậy giá trị nhỏ nhất của A bằng \( - {5 \over 4}.\)

Dấu “=” xảy ra \( \Leftrightarrow m - {3 \over 2} = 0 \Leftrightarrow m = {3 \over 2}.\)

LG bài 2

Phương pháp giải:

Chứng minh tích a.c<0

Sử dụng hệ thức vi-ét để tìm tổng và tích hai nghiệm  

\({x_1} + {x_2} =  - \frac{b}{a};{x_1}.{x_2} = \frac{c}{a}\)

Thế vào A ta tìm được m

Lời giải chi tiết:

Bài 2: Vì \(a = 1; c = − 1   \Rightarrow  ac < 0\), nên phương trình luôn luôn có hai nghiệm. Theo định lí Vi-ét, ta có : \({x_1} + {x_2} = 2m;\,\,\,\,{x_1}{x_2} =  - 1\)

Vậy : \(x_1^2 + x_2^2 - {x_1}{x_2} = 7 \)

\(\Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 3{x_1}{x_2} = 7\)

\( \Leftrightarrow 4{m^2} + 3 = 7\)

\(\Leftrightarrow 4{m^2} = 4 \Leftrightarrow m =  \pm 1.\) 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved