PHẦN HÌNH HỌC - TOÁN 9 TẬP 2

Đề kiểm tra 15 phút - Đề số 4 - Bài 7 - Chương 3 - Hình học 9

Đề bài

Cho tam giác ABC. Gọi I là giao điểm của các đường phân giác trong của hai góc B và C và J là giao điểm các phân giác ngoài của hai góc đó.

a) Chứng minh BICJ là tứ giác nội tiếp.

b) Chứng minh rằng ba điểm A, I, J thẳng hàng.

Phương pháp giải - Xem chi tiết

a.Sử dụng: Tia phân giác của hai góc kề bù vuông góc với nhau

Chứng minh tứ giác BICJ có tổng hai góc đối bằng 180 độ

b. Chỉ ra J thuộc phân giác góc A

Lời giải chi tiết

 

 

a) Ta có BI và BJ là phân giác của hai góc kề bù nên \(BI \bot BJ\) hay \(\widehat {IBJ} = 90^\circ .\)

Tương tự \(\widehat {{\rm{ICJ}}} = 90^\circ \)

\( \Rightarrow \widehat {IBJ} + \widehat {{\rm{ICJ}}} = 180^\circ \)

\( \Rightarrow \) Tứ giác BICJ nội tiếp.

b) Hạ JH, JK, JP lần lượt vuông góc với BC, AB, AC ta có :

\(JH = JK\) ( tính chất phân giác)

\(JH = JP\) ( tính chất phân giác)

\( \Rightarrow  JK = JP\) chứng tỏ J thuộc phân giác góc A.

Do đó ba điểm A, I, J thẳng hàng.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved