PHẦN ĐẠI SỐ - TOÁN 9 TẬP 1

Đề kiểm tra 15 phút - Đề số 3 - Bài 5 - Chương 2 - Đại số 9

Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2
Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2

Đề bài

Đề bài

Bài 1. Viết phương trình đường thẳng (d) qua điểm \(A\left( {1; - \sqrt 3  + 3} \right)\) và song song với đường thẳng \(y =  - \sqrt 3 x.\) Tính góc tạo bởi đường thẳng (d) và trục \(Ox\).

Bài 2. Cho hàm số \(y = -x + 1\)   

a. Vẽ đồ thị của hàm số

b. Tính góc tạo bởi đường thẳng \(y = -x + 1\) và trục hoành.

LG bài 1

LG bài 1

Phương pháp giải:

Tìm góc bằng cách sử dụng tỉ số lượng giác của góc nhọn.

Lời giải chi tiết:

Đường thẳng (d) song song với đường thẳng \(y =  - \sqrt 3 x\) nên phương trình của (d) có dạng : \(y =  - \sqrt 3 x + b\) \((b ≠ 0)\)

\(A \in \left( d \right) \Rightarrow  - \sqrt 3  + 3 =  - \sqrt 3 .1 + b \)

\(\Rightarrow b = 3\)

Vậy : \(y =  - \sqrt 3 x + 3\)

Với \(x=0 \Rightarrow  y=3\) 

Với \(y=0  \Rightarrow  x=\sqrt 3\)

Suy ra đường thẳng \(y =  - \sqrt 3 x + 3\) (d) qua hai điểm \(M(0; 3)\), \(N\left( {\sqrt 3 ;0} \right)\) (với \(M\in Oy, N\in Ox)\)

Trong tam giác vuông OMN, ta có: 

\(\eqalign{  & OM = 3;ON = \sqrt 3   \cr  &  \Rightarrow \tan \widehat {MNO} = {{OM} \over {ON}} = \sqrt 3  \cr& \Rightarrow \widehat {MNO} = 60^\circ \cr& \Rightarrow \widehat {MNx} = 180^\circ  - 60^\circ  = 120^\circ . \cr} \)

Vậy góc giữa đường thẳng (d) và \(Ox\) bằng \(120^\circ \)

LG bài 2

LG bài 2

Phương pháp giải:

Vẽ đồ thị hàm số rồi tìm góc bằng cách sử dụng tỉ số lượng giác của góc nhọn.

Lời giải chi tiết:

a. Bảng giá trị:

x

0

1

y

1

0

Đường thẳng \(y = -x + 1\) qua hai điểm \(A(0; 1)\) và \(B(1; 0)\). 

b. Ta có \(OA=OB=1\)

Xét tam giác OAB vuông tại O có OA=OB nên tam giác OAB vuông cân tại O. 

Suy ra \(\widehat {ABO} = 45^\circ \) nên \(\widehat {ABx} = 180^0-45^\circ =135^0\) 

Vậy góc giữa đường thẳng \(y = -x + 1\) và trục \(Ox\) bằng \(135^\circ .\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved