PHẦN HÌNH HỌC - TOÁN 8 TẬP 1

Đề kiểm tra 15 phút - Đề số 2 - Bài 4 - Chương 2 - Hình học 8.

Đề bài

Chứng minh rằng: Đường thẳng đi qua trung điểm của đường trung bình và cắt hai đáy của hình thang thì chia hình thang thành hai đa giác có diện tích bằng nhau.

Phương pháp giải - Xem chi tiết

Sử dụng: 

Đường trung bình của hình thang bằng nửa tổng hai đáy

Diện tích hình thang bằng nửa tích chiều cao với tổng hai đáy

Lời giải chi tiết

 

Gọi I là trung điểm của đường trung bình MN và đường thẳng EF đi qua I. Khi đó các tứ giác AEFD, BEFC cũng là các hình thang nên:

\({S_{AEFD}} = {{\left( {AE + DF} \right).AH} \over 2} = MI.AH\)

(tính chất đường trung bình bằng nửa tổng hai cạnh đáy)

Tương tự \({S_{BEFC}} = {{\left( {BE + CF} \right).AH} \over 2} = NI.AI\)

Mà MI = NI (gt)

\( \Rightarrow {S_{AEFD}} = {S_{BEFC}}.\)

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved