PHẦN HÌNH HỌC - TOÁN 8 TẬP 1

Đề kiểm tra 15 phút - Đề số 14 - Bài 6 - Chương 2 - Hình học 8

Đề bài

Cho đa giác n – cạnh có diện tích S, các đường thẳng a, b, c cắt nhau tại A, B, C nằm trong tam giác sao cho mỗi đường thẳng chia đa giác thành hai phần có diện tích bằng nhau.

Chứng minh rằng \({S_{ABC}} \le \dfrac{1}{4}S.\)

Phương pháp giải - Xem chi tiết

Phân chia đa giác thành các tam giác để so sánh.

Lời giải chi tiết

 

 

Gọi diện tích của các phần của đa giác được chia bởi các đường thẳng là \({S_1},\,{S_2},{S_3},...\)

Ta có: \({S_1} + {S_2} + {S_6} = \dfrac{1}{2}S = {S_1} + {S_6} + {S_5} + {S_7}\)

\( \Rightarrow {S_2} = {S_5} + {S_7}\) mà \(\dfrac{1 }{ 2}S = {S_1} + {S_2} + {S_3} + {S_7}\)

\( \Rightarrow {1 \over 2}S = {S_1} + {S_5} + {S_7} + {S_3} + {S_7} > 2{S_7}\)

\(\Rightarrow {S_7} < \dfrac{1 }{ 4}S.\)

Vậy \({S_{ABC}} < \dfrac{1 }{4}S\) (đpcm).

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved