Bài 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
Bài 2. Tỉ số lượng giác của góc nhọn
Bài 3. Bảng lượng giác
Bài 4. Một số hệ thức về cạnh và góc trong tam giác vuông
Bài 5. Ứng dụng thực tế các tỉ số lượng giác của góc nhọn. Thực hành ngoài trời
Ôn tập chương I – Hệ thức lượng giác trong tam giác vuông
Đề kiểm tra 15 phút - Chương 1 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 1 - Hình học 9
Bài 1. Sự xác định của đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II – Đường tròn
Đề kiểm tra 15 phút - Chương 2 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Hình học 9
Đề bài
Cho đường tròn tâm K có đường kính BC. Gọi D là trung điểm của KC và I là tâm của đường tròn có đường kính BD.
a. Chứng tỏ hai đường tròn (K) và (I) tiếp xúc trong với nhau.
b. Qua B vẽ đường thẳng (không trùng với BC) cắt (K) và (I) lần lượt tại A và E. Chứng tỏ KA // IE và \({{CA} \over {DE}}\) không đổi.
Phương pháp giải - Xem chi tiết
a. So sánh hiệu hai bán kính và khoảng cách hai tâm
b.
-Chỉ ra 1 cặp góc đồng vị bằng nhau
-Chứng minh DE//AC sau đó áp dụng định lý Ta-Lét
Lời giải chi tiết
a. Ta có: \(IK = KB - IB \;(d = R - R’)\)
\(⇒\) Đường tròn (I) và (K) tiếp xúc trong với nhau.
b. Ta có: \(IB = IE\; (= R’)\) nên ∆BIE cân tại I \( \Rightarrow {\widehat B_1} = {\widehat E_1}\)
Tương tự ∆BKA cân tại K \( \Rightarrow {\widehat B_1} = {\widehat A_1}\)
Do đó: \({\widehat E_1} = {\widehat A_1}\) \(⇒\) AK // IE (cặp góc đồng vị)
Ta có: \(\widehat {BED} = \widehat {BAC} = 90^\circ \) \(⇒\) DE // AC
Theo Định lí Ta-lét, ta có: \({{CA} \over {DE}} = {{BC} \over {BD}}\) không đổi.
CHƯƠNG 3: QUANG HỌC
Bài 25
Đề thi vào 10 môn Toán Bình Dương
Bài 5
Đề thi vào 10 môn Văn Bình Phước