Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng Căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Bài 8. Rút gọn biểu thức chứa căn bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I – Căn bậc hai. Căn bậc ba
Đề kiểm tra 15 phút - Chương I - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương I - Đại số 9
Bài 1. Nhắc lại và bổ sung các khái niệm về hàm số
Bài 2. Hàm số bậc nhất
Bài 3. Đồ thị của hàm số y = ax + b (a ≠ 0)
Bài 4. Đường thẳng song song và đường thẳng cắt nhau
Bài 5. Hệ số góc của đường thẳng y = ax + b (a ≠ 0).
Ôn tập chương II – Hàm số bậc nhất
Đề kiểm tra 15 phút - Chương 2 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Đại số 9
Đề bài
Đề bài
Bài 1. Tìm m để mỗi hàm số sau là hàm bậc nhất:
a. \(y = \sqrt {m - 3} \left( {x - 1} \right)\)
b. \(y = {{1 - m} \over {4 - m}}x + {1 \over 4}\)
Bài 2. Hàm số nào sau đây là hàm số đồng biến, nghịch biến?
a. \(y = \left( {2 - \sqrt 3 } \right)x + 1\)
b. \(y = {1 \over {\sqrt 2 - 2}}x + {1 \over {\sqrt 2 }}\)
Bài 3. Tìm m để mỗi hàm số sau đồng biến trên \(\mathbb R\):
a. \(y = mx + 1\)
b. \(y = \sqrt {3 - m} x + \sqrt 2 \)
LG bài 1
LG bài 1
Phương pháp giải:
Hàm số \(y = ax + b\) là hàm số bậc nhất khi \(a ≠ 0.\)
Lời giải chi tiết:
a. Hàm số \(y = \sqrt {m - 3} \left( {x - 1} \right)\)\( = \sqrt {m - 3}.x - \sqrt {m - 3}\) là hàm số bậc nhất khi \(\left\{ {\matrix{ {m - 3 \ge 0} \cr {m - 3 \ne 0} \cr } } \right. \Leftrightarrow m > 3\)
b. Hàm số \(y = {{1 - m} \over {4 - m}}x + {1 \over 4}\) là hàm số bậc nhất khi : \({{1 - m} \over {4 - m}} \ne 0 \Leftrightarrow \left\{ {\matrix{ {1 - m \ne 0} \cr {4 - m \ne 0} \cr } } \right. \Leftrightarrow \left\{ {\matrix{ {m \ne 1} \cr {m \ne 4} \cr } } \right.\)
LG bài 2
LG bài 2
Phương pháp giải:
Hàm số bậc nhất \(y = ax + b\) xác định với mọi giá trị của x thuộc R và có tính chất sau:
a) Đồng biến trên R khi \(a > 0\)
b) Nghịch biến trên R khi \(a < 0.\)
Lời giải chi tiết:
a. Ta có: \(a = 2 - \sqrt 3 > 0.\) Vậy hàm số đã cho đồng biến trên \(\mathbb R\).
b. Ta có: \(a = {1 \over {\sqrt 2 - 2}} < 0.\) Vậy hàm số đã cho nghịch biến trên \(\mathbb R\).
LG bài 3
LG bài 3
Phương pháp giải:
Hàm số bậc nhất \(y = ax + b\) xác định với mọi giá trị của x thuộc R và có tính chất sau:
a) Đồng biến trên R khi \(a > 0\)
b) Nghịch biến trên R khi \(a < 0.\)
Lời giải chi tiết:
a. Hàm số đồng biến \(⇔ m > 0\)
b. Hàm số đồng biến \(⇔\) \(\sqrt {3 - m} > 0 \Leftrightarrow 3 - m > 0 \Leftrightarrow m < 3\)