Đề bài
Cho \({b_1} = 2^5;\,{b_2} = 2^3\). Tính \({\log _2}{b_1} - {\log _2}{b_2};\,{\log _2}{\dfrac {{b_1}} {{b_2}}}\) và so sánh các kết quả.
Lời giải chi tiết
\(\eqalign{
& {\log _2}{b_1} - {\log _2}{b_2} = {\log _2}{2^5} - {\log _2}{2^3} \cr &= 5 - 3 = 2 \cr
& {\log _2}{{{b_1}} \over {{b_2}}} = {\log _2}{{{2^5}} \over {{2^3}}} = {\log _2}{2^2} = 2 \cr
& \Rightarrow {\log _2}{b_1} - {\log _2}{b_2} = {\log _2}{{{b_1}} \over {{b_2}}} \cr} \)
Tải 5 đề kiểm tra 15 phút - Chương 8 – Hóa học 12
SOẠN VĂN 12 TẬP 2
Bài 18. Đô thị hóa
SBT tiếng Anh 12 mới tập 1
Tải 10 đề kiểm tra 15 phút - Chương 6 – Hóa học 12