1. Nội dung câu hỏi
Cho tứ diện ABCD. Gọi I, J lần lượt là trung điểm của các cạnh BC, CD. Trên cạnh AC lấy điểm K. Gọi M là giao điểm của BK và AI, N là giao điểm của DK và AJ. Chứng minh rằng đường thẳng MN song song với đường thẳng BD.
2. Phương pháp giải
Dựa vào định lí về giao tuyến của ba mặt phẳng.
3. Lời giải chi tiết
- Ta có: B ∈ (BDK) và B ∈ (BCD) nên B là giao điểm của (BDK) và (BCD).
D ∈ (BDK) và D ∈ (BCD) nên D là giao điểm của (BDK) và (BCD).
Do đó (BDK) ∩ (BCD) = BD.
- Ta có: M ∈ BK mà BK ⊂ (BDK) nên M ∈ (BDK);
M ∈ AI mà AI ⊂ (AIJ) nên M ∈ (AIIJ)
Do đó M là giao điểm của (BDK) và (AIJ)
Tương tự ta cũng có N là giao điểm của (BDK) và (AIJ)
Suy ra (BDK) ∩ (AIJ) = MN.
- Ta có: I ∈ BC mà BC ⊂ (BCD) nên I ∈ (BCD)
Lại có I ∈ (AIJ) nên I là giao điểm của (BCD) và (AIJ)
Tương tự ta cũng có J là giao điểm của (BCD) và (AIJ)
Suy ra (BCD) ∩ (AIJ) = IJ.
- Xét DBCD có I, J lần lượt là trung điểm của BC, CD nên IJ là đường trung bình của tam giác
Do đó IJ // BD.
- Ta có: (BDK) ∩ (BCD) = BD;
(BDK) ∩ (AIJ) = MN;
(BCD) ∩ (AIJ) = IJ;
IJ // BD.
Suy ra MN // BD.
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Tiếng Anh lớp 11
Unit 2: Leisure time
Chủ đề 1: Vai trò, tác dụng của môn bóng chuyền đối với sự phát triển thể chất - một số điều luật thi đấu môn bóng chuyền
Chủ đề 1: Cách mạng tư sản và sự phát triển của chủ nghĩa tư bản
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Hóa học lớp 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11