Cho hình chóp tứ giác S.ABCD có đáy không là hình thang. Gọi M là trung điểm của SA.
Lời giải phần a
1. Nội dung câu hỏi
Xác định giao điểm của CD với mặt phẳng (SAB).
2. Phương pháp giải
Muốn tìm giao điểm của một đường thẳng a và mặt phẳng (P), ta tìm giao điểm của a và một đường thẳng b nằm trong (P):
3. Lời giải chi tiết
Trong mặt phẳng (ABCD) ta có: gọi giao điểm của AB và CD là N.
Mà AB ⊂ (SAB)
Do đó CD ∩ (SAB) = {N}.
Lời giải phần b
1. Nội dung câu hỏi
Xác định giao tuyến của hai mặt phẳng (SAB) và (SCD).
2. Phương pháp giải
Để xác định giao tuyến của hai mặt phẳng, ta tìm điểm chung của chúng. Đường thẳng đi qua hai điểm chung là giao tuyến.
3. Lời giải chi tiết
Ta có: AB ∩ CD = {N};
AB ⊂ (SAB);
CD ⊂ (SCD)
Do đó N là giao điểm của (SAB) và (SCD).
Lại có: S ∈ (SAB) và S ∈ (SCD).
Nên S là giao điểm của (SAB) và (SCD).
Vì vậy (SAB) ∩ (SCD) = SN.
Lời giải phần c
1. Nội dung câu hỏi
Xác định giao tuyến của hai mặt phẳng (MCD) và (SBC).
2. Phương pháp giải
Để xác định giao tuyến của hai mặt phẳng, ta tìm điểm chung của chúng. Đường thẳng đi qua hai điểm chung là giao tuyến.
3. Lời giải chi tiết
Ta có: C ∈ (SBC) và C ∈ (MCD).
Do đó C là giao điểm của (SBC) và (MCD).
Trong mặt phẳng (SAB), gọi Q là giao điểm của MN và SB.
Mà MN ⊂ (MCD) và SB ⊂ (SBC)
Suy ra Q là giao điểm của (SBC) và (MCD).
Vì vậy (SBC) ∩ (MCD) = CQ.
Chương 1. Một số khái niệm về lập trình và ngôn ngữ lập trình
Review 4
Chủ đề 2: Nitrogen và sulfur
SBT Ngữ văn 11 - Chân trời sáng tạo tập 1
Unit 2: Leisure time
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11