Cho tam giác ABC và điểm S không thuộc mặt phẳng (ABC). Lấy D, E là các điểm lần lượt thuộc cạnh SA, SB và D, E khác S.
Lời giải phần a
1. Nội dung câu hỏi
Đường thẳng DE có nằm trong mặt phẳng (SAB) không?
2. Phương pháp giải
Nếu một đường thẳng có hai điểm phân biệt thuộc một mặt phẳng thì tất cả các điểm của đường thẳng đều thuộc mặt phẳng đó.
3. Lời giải chi tiết
Vì D thuộc cạnh SA nên D thuộc mặt phẳng (SAB).
Vì E thuộc cạnh SB nên E thuộc mặt phẳng (SAB).
Vì D và E cùng thuộc mặt phẳng (SAB) nên đường thẳng DE nằm trong mặt phẳng (SAB).
Lời giải phần b
1. Nội dung câu hỏi
Giả sử DE cắt AB tại F. Chứng minh rằng F là điểm chung của hai mặt phẳng (SAB) và (CDE).
2. Phương pháp giải
NĐể xác định giao điểm của một đường thẳng và một mặt phẳng, ta có thể tìm giao điểm của đường thẳng đó với một đường thẳng nằm trong mặt phẳng đã cho.
3. Lời giải chi tiết
Vì F thuộc DE nên F thuộc mặt phẳng (CDE).
Vì F thuộc AB nên F thuộc mặt phẳng (SAB).
Do đó, F là điểm chung của hai mặt phẳng (SAB) và (CDE).
PHẦN HAI. LỊCH SỬ THẾ GIỚI HIỆN ĐẠI (Phần từ năm 1917 đến năm 1945)
HÌNH HỌC - TOÁN 11
Chủ đề 2. Cảm ứng ở sinh vật
Unit 8: Becoming independent
Chủ đề 4. Sản xuất cơ khí
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11