SGK Toán 8 - Chân trời sáng tạo tập 1

Câu hỏi 4 - Mục Bài tập trang 72

Lựa chọn câu hỏi để xem giải nhanh hơn
Lời giải phần a
Lời giải phần b
Lời giải phần c

Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của góc B cắt AC tại D. Trên BC lấy điểm E sao cho BE = BA.

Lựa chọn câu hỏi để xem giải nhanh hơn
Lời giải phần a
Lời giải phần b
Lời giải phần c

Lời giải phần a

1. Nội dung câu hỏi

Chứng minh rằng ABD = EBD.

 

2. Phương pháp giải

Áp dụng trường hợp bằng nhau c-g-c.

 

3. Lời giải chi tiết

 Xét ∆ABD và ∆EBD có:

BA = BE (giả thiết);

ABD^=EBD^ (do BD là tia phân giác của ABE^);

BD là cạnh chung,

Do đó ∆ABD = ∆EBD (c.g.c).

Lời giải phần b

1. Nội dung câu hỏi

Kẻ đường cao AH của tam giác ABC. Chứng minh rằng tứ giác ADEH là hình thang vuông.

 

2. Phương pháp giải

Áp dụng dấu hiệu nhận biết của hình thang và định nghĩa hình thang vuông.

 

3. Lời giải chi tiết

Do ∆ABD = ∆EBD (câu a) nên BAD^=BED^=90° (hai góc tương ứng).

Do đó DE ⊥ BC

Mà AH ⊥ BC (giả thiết) nên DE // AH.

Tứ giác ADEH có DE // AH nên là hình thang

Lại có AHE^=90° nên ADEH là hình thang vuông.

Lời giải phần c

1. Nội dung câu hỏi

Gọi I là giao điểm của AH với BD, đường thẳng EI cắt AB tại F. Chứng minh rằng tứ giác ACEF là hình thang vuông.

 

2. Phương pháp giải

Áp dụng dấu hiệu nhận biết của hình thang và định nghĩa hình thang vuông.

 

3. Lời giải chi tiết

Do ∆ABD = ∆EBD (câu a) nên AD = ED (hai cạnh tương ứng)

Do đó D nằm trên đường trung trực của AE.

Lại có BA = BE (giả thiết) nên B nằm trên đường trung trực của AE.

Suy ra BD là đường trung trực của đoạn thẳng AE nên BD ⊥ AE, hay BI ⊥ AE.

Xét ∆ABE có AI ⊥ BE, BI ⊥ AE nên I là trực tâm của tam giác

Do đó EI ⊥ AB hay EF ⊥ AB.

Mà CA ⊥ AB (do ∆ABC vuông tại A)

Suy ra EF // CA.

Tứ giác ACEF có EF // CA nên là hình thang.

Lại có FAC^=90° nên ACEF là hình thang vuông.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved