Câu hỏi 4 - Mục Bài tập trang 100

1. Nội dung câu hỏi

Cho tứ diện ABCD. Gọi G1, G2 lần lượt là trọng tâm của các tam giác ABC, ABD. Chứng minh rằng đường thẳng G1G2 song song với đường thẳng CD.


2. Phương pháp giải

Sử dụng tính chất trọng tâm trong tam giác và định lí Thales trong tam giác.


3. Lời giải chi tiết

+) Trong mặt phẳng ABC, kẻ đường trung tuyến AM (M ∈ BC).

Do G1 là trọng tâm của tam giác ABC nên AG1AM=23.

+) Trong mặt phẳng ABD, kẻ đường trung tuyến AN (N ∈ BD).

Do G2 là trọng tâm của tam giác ABD nên AG2AN=23.

+) Xét tam giác AMN, có AG1AM=AG2AN=23 nên G1G2//MN (định lí Thalès đảo).

+) Xét tam giác BCD, có: M, N lần lượt là trung điểm của BC, BD

Do đó MN là đường trung bình của tam giác BCD.

Suy ra MN // CD.

Mà G1G2 // MN (chứng minh trên) nên G1G2  // CD.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved