Câu hỏi 14 - Mục Bài tập trang 42

Lựa chọn câu hỏi để xem giải nhanh hơn
Lời giải phần a
Lời giải phần b
Lời giải phần c

Một cây cầu có dạng cung OA của đồ thị hàm số y = 4,8.sinx9 và được mô tả trong hệ trục toạ độ với đơn vị trục là mét như ở Hình 39.


 

Lựa chọn câu hỏi để xem giải nhanh hơn
Lời giải phần a
Lời giải phần b
Lời giải phần c

Lời giải phần a

1. Nội dung câu hỏi

Giả sử chiều rộng của con sông là độ dài đoạn thẳng OA. Tìm chiều rộng đó (làm tròn kết quả đến hàng phần mười).


2. Phương pháp giải

Sử dụng công thức nghiệm của phương trình sin.


3. Lời giải chi tiết
Hai vị trí O và A là hai vị trí chân cầu, tại hai vị trí này ta có: y = 0

4,8·sinx9=0sinx9=0x9=kπ(k)x=9kπ(k)

Quan sát đồ thị ta thấy, đồ thị hàm số y = 4,8.sinx9 cắt trục hoành tại điểm O và A liên tiếp nhau với x ≥ 0.

Xét k = 0, ta có x1 = 0;

Xét k = 1, ta có x2 = 9π.

Mà x1 = 0 nên đây là hoành độ của O, do đó x2 = 9π là hoành độ của điểm A.

Khi đó OA = 9π ≈ 28,3.

Vậy chiều rộng của con sông xấp xỉ 28,3 m.

Lời giải phần b

1. Nội dung câu hỏi

Một sà lan chở khối hàng hoá được xếp thành hình hộp chữ nhật với độ cao 3,6 m so với mực nước sông sao cho sà lan có thể đi qua được gầm cầu. Chứng minh rằng chiều rộng của khối hàng hoá đó phải nhỏ hơn 13,1 m.


2. Phương pháp giải

Sử dụng máy tính cầm tay.


3. Lời giải chi tiết
Do sà lan có độ cao 3,6 m so với mực nước sông nên khi sà lan đi qua gầm cầu thì ứng với y = 3,6.
4,8·sinx9=3,6
sinx9=34
[x90,848+k2πx9π-0,848+k2π

(Dùng máy tính cầm tay (chuyển về chế độ “radian”) bấm liên tiếp ta được kết quả gần đúng là 0,848)

[x7,632+18kπx9π-7,632+18kπ(k)

Xét k = 0, ta có x1 ≈ 7,632; x2 ≈ 20,642.

Ta biểu diễn các giá trị x vừa tìm được trên hệ trục tọa độ vẽ đồ thị hàm số y = 4,8.sinx9 như sau:

Khi đó để sà lan có thể đi qua được gầm cầu thì khối hàng hóa có độ cao 3,6 m phải có chiều rộng nhỏ hơn độ dài đoạn thẳng BC trên hình vẽ.

Mà BC ≈ 20,642 – 7,632 = 13,01 (m) < 13,1 (m).

Vậy chiều rộng của khối hàng hoá đó phải nhỏ hơn 13,1 m.

Lời giải phần c

1. Nội dung câu hỏi

Một sà lan khác cũng chở khối hàng hoá được xếp thành hình hộp chữ nhật với chiều rộng của khối hàng hoá đó là 9 m sao cho sà lan có thể đi qua được gầm cầu. Chứng minh rằng chiều cao của khối hàng hoá đó phải nhỏ hơn 4,3 m.


2. Phương pháp giải

Sử dụng công thức nghiệm của phương trình sin.


3. Lời giải chi tiết
Giả sử sà lan chở khối hàng được mô tả bởi hình chữ nhật MNPQ:

Khi đó QP = 9; OA = 28,3 và OQ = PA.

Mà OQ + QP + PA = OA

⇒OQ + 9 + OQ ≈ 28,3

⇒OQ ≈ 9,65

Khi đó yM=4,8·sinxM9=4,8·sinOQ94,8·sin9,6594,22( m)<4,3( m).
Vậy để sà lan có thể đi qua được gầm cầu thì chiều cao của khối hàng hoá đó phải nhỏ hơn 4,3 m.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved