Bài 1. Tính đơn điệu của hàm số
Bài 2. Cực trị của hàm số
Bài 3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
Bài 5. Đường tiệm cận của đồ thị hàm số
Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một hàm số đa thức
Bài 7. Khảo sát sự biến thiên và vẽ đồ thị hàm số của một số hàm phân thức hữu tỉ
Bài 8. Một số bài toán thường gặp về đồ thị
Câu hỏi và bài tập chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài tập trắc nghiệm khách quan chương I - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số - Toán 12 Nâng cao
Bài 1. Lũy thừa với số mũ hữu tỉ
Bài 2. Lũy thừa với số mũ thực
Bài 3. Lôgarit
Bài 4. Số e và loogarit tự nhiên
Bài 5. Hàm số mũ và hàm số lôgarit
Bài 6. Hàm số lũy thừa
Bài 7. Phương trình mũ và lôgarit
Bài 8. Hệ phương trình mũ và lôgarit
Bài 9. Bất phương trình mũ và lôgarit
Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
Bài tập trắc nghiệm khách quan chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit - Toán 12 Nâng cao
Bài 1. Nguyên hàm
Bài 2. Một số phương pháp tìm nguyên hàm
Bài 3. Tích phân
Bài 4. Một số phương pháp tích phân
Bài 5. Ứng dụng tích phân để tính diện tích hình phẳng
Bài 6. Ứng dụng tích phân để tính thể tích vật thể
Ôn tập chương III - Nguyên hàm, tích phân và ứng dụng
Bài tập trắc nghiệm khách quan chương III - Nguyên hàm, tích phân và ứng dụng - Toán 12 Nâng cao
LG a
Vẽ đồ thị của các hàm số y = 2x; \(y = {(\sqrt 2 )^x}\) và \(y = {(\sqrt 3 )^x}\) trên cùng một mặt phẳng tọa độ,
Hãy nêu nhận xét về trị trí tương đối của ba đồ thị hàm số đó.
Lời giải chi tiết:
Với x > 0 thì \({2^x} > {(\sqrt 3 )^x} > {(\sqrt 2 )^x}\) nên x > 0 đồ thị y = 2x nằm phía trên đồ thị \(y = {(\sqrt 3 )^x}\) và đồ thị \(y = {(\sqrt 3 )^x}\) nằm phía trên đồ thị \(y = {(\sqrt 2 )^x}\)
Với x < 0 thì \({2^x} < {(\sqrt 3 )^x} < {(\sqrt 2 )^x}\)
nên với x < 0 thì y = 2x nằm phía dưới đồ thị \(y = {(\sqrt 3 )^x}\) và đồ thị \(y = {(\sqrt 3 )^x}\) nằm phía dưới đồ thị \(y = {(\sqrt 2 )^x}\)
LG b
Vẽ đồ thị hàm số y = log3x. Từ đó suy ra đồ thị của hàm số y = 2 + log3x và đồ thị của hàm số y = log3(x + 2)
Lời giải chi tiết:
Đồ thị y = 2 + log3x có được bằng cách tịnh tiến lên 2 đơn vị của đồ thị y = log3x
Đồ thị y = log3(x + 2) có được bằng cách tịnh tiến sang trái 2 đơn vị của đồ thị y = log3x
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Địa lí lớp 12
Tóm tắt, bố cục, nội dung chính các tác phẩm SGK Ngữ văn 12 - tập 1
Đề kiểm tra 45 phút - Chương 5 – Hóa học 12
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Ngữ văn lớp 12
Đề khảo sát chất lượng đầu năm