Đề bài
Cho tam giác ABC vuông tại A, AB = a, BC = 2a. Hai tia Bx và Cy cùng vuông góc với mp(ABC) và nằm về một phía đối với mặt phẳng đó. Trên Bx, Cy lần lượt lấy các điểm B’, C’ sao cho BB’ = a, CC’ = m.
a. Với giá trị nào của m thì AB’C’ là tam giác vuông ?
b. Khi tam giác AB’C’ vuông tại B’, kẻ AH ⊥ BC. Chứng minh rằng B’C’H là tam giác vuông. Tính góc giữa hai mặt phẳng (ABC) và (AB’C’).
Lời giải chi tiết
\(\Delta ABC\) vuông tại A nên theo pitago:
\(A{C^2} = B{C^2} - A{B^2}\) \( = {\left( {2a} \right)^2} - {a^2} = 3{a^2}\)
Tam giác ABB’ vuông tại B nên theo pitago:
\(AB{'^2} = A{B^2} + BB{'^2}\) \( = {a^2} + {a^2} = 2{a^2}\)
Tam giác ACC’ vuông tại C nên theo pitago:
\(AC{'^2} = A{C^2} + CC{'^2} = 3{a^2} + {m^2}\)
Trong (BCC’B’), kẻ \(B'M \bot CC'\) thì \(B'M = 2a,MC' = m - a\)
Tam giác B’MC’ vuông tại M nên theo pitago:
\(B'C{'^2} = B'{M^2} + MC{'^2}\) \( = {\left( {2a} \right)^2} + {\left( {m - a} \right)^2} = 4{a^2} + {\left( {m - a} \right)^2}\)
a. Ta có:
+) Tam giác AB’C’ vuông ở A khi và chỉ khi:
\(\begin{array}{l}
AB{'^2} + AC{'^2} = B'C{'^2}\\
\Leftrightarrow 2{a^2} + 3{a^2} + {m^2} = 4{a^2} + {\left( {m - a} \right)^2}\\
\Leftrightarrow 5{a^2} + {m^2} = 4{a^2} + {m^2} - 2ma + {a^2}\\
\Leftrightarrow 2ma = 0\\
\Leftrightarrow m = 0
\end{array}\)
Vậy tam giác AB’C’ vuông ở A khi và chỉ khi m = 0
+) Tam giác AB’C’ vuông ở C’ khi và chỉ khi :
\(\begin{array}{l}
AC{'^2} + B'C{'^2} = AB{'^2}\\
\Leftrightarrow 3{a^2} + {m^2} + 4{a^2} + {\left( {m - a} \right)^2} = 2{a^2}\\
\Leftrightarrow 5{a^2} + {m^2} + {\left( {m - a} \right)^2} = 0
\end{array}\)
Điều này không xảy ra vì:
\(\left\{ \begin{array}{l}
5{a^2} > 0\\
{m^2} \ge 0\\
{\left( {m - a} \right)^2} \ge 0
\end{array} \right.\)\( \Rightarrow 5{a^2} + {m^2} + {\left( {m - a} \right)^2} > 0,\forall m\)
Tam giác AB’C’ vuông ở B’ khi và chỉ khi :
\(\begin{array}{l}
AB{'^2} + B'C{'^2} = AC{'^2}\\
\Leftrightarrow 2{a^2} + 4{a^2} + {\left( {m - a} \right)^2} = 3{a^2} + {m^2}\\
\Leftrightarrow 6{a^2} + {m^2} - 2ma + {a^2} - 3{a^2} - {m^2} = 0\\
\Leftrightarrow 4{a^2} - 2ma = 0\\
\Leftrightarrow 2ma = 4{a^2}\\
\Leftrightarrow m = 2a
\end{array}\)
Vậy tam giác AB’C’ vuông ở B’ khi và chỉ khi m = 2a
b. Giả sử tam giác AB’C’ vuông ở B’, tức là m = 2a
Tam giác ABC vuông tại A có đường cao AH nên:
\(BH.BC = A{B^2}\)\( \Leftrightarrow BH = \frac{{A{B^2}}}{{BC}} = \frac{{{a^2}}}{{2a}} = \frac{a}{2}\)
\( \Rightarrow HC = BC - BH\) \( = 2a - \frac{a}{2} = \frac{{3a}}{2}\)
Tam giác B’BH vuông tại B nên:
\(B'{H^2} = B'{B^2} + B{H^2}\) \( = {a^2} + {\left( {\frac{a}{2}} \right)^2} = \frac{{5{a^2}}}{4}\)
Tam giác C’CH vuông tại C nên:
\(C'{H^2} = C'{C^2} + C{H^2}\) \( = {\left( {2a} \right)^2} + {\left( {\frac{{3a}}{2}} \right)^2} = \frac{{25{a^2}}}{4}\)
\(B'C{'^2} = 4{a^2} + {\left( {2a - a} \right)^2} = 5{a^2}\)
\( \Rightarrow B'{H^2} + B'C{'^2}\) \( = \frac{{5{a^2}}}{4} + 5{a^2} = \frac{{25{a^2}}}{4} = C'{H^2}\)
\( \Rightarrow \Delta B'C'H\) vuông tại B’.
*) Tính góc giữa mp(ABC) và mp(AB’C’) khi m = 2a.
Gọi I là giao điểm của B’C’ và BC.
Do BB’ // CC’ , BB’ = a, CC’ = 2a nên BB' là đường trung bình của tam giác ICC'
Do đó BC = BI, B’C’ = B’I.
Xét phép chiếu lên mp(ABC). Ta có tam giác AIC là hình chiếu của tam giác AIC’. Gọi φ là góc giữa mp(ABC) và mp(AB’C’) thì \({S_{AIC}} = {S_{AIC'}}\cos \varphi \)
Ta có: \({S_{AIC}} = 2{S_{ABC}} \)\( = 2.\frac{1}{2}AB.AC = 2.\frac{1}{2}.a.a\sqrt 3 = {a^2}\sqrt 3 \)
Mặt khác : \({S_{AIC'}} = {1 \over 2}IC'.AB' \)\(= {1 \over 2}.2a\sqrt 5 .a\sqrt 2 = {a^2}\sqrt {10} \)
Từ đó : \(\cos \varphi = {{{a^2}\sqrt 3 } \over {{a^2}\sqrt {10} }} = {{\sqrt {30} } \over {10}}\)
Vậy góc giữa mp(ABC) và mp(AB’C’) là φ được tính bởi \(\cos \varphi = {{\sqrt {30} } \over {10}},0^\circ < \varphi < 90^\circ \)
Chuyên đề 1: Tập nghiên cứu và viết báo cáo về một vấn đề văn học trung đại Việt Nam
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Sinh học lớp 11
CHƯƠNG III. SINH TRƯỞNG VÀ PHÁT TRIỂN
Chủ đề 2: Kĩ thuật di chuyển và chuyền bóng
SOẠN VĂN VĂN 11 TẬP 2
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11