Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho tứ diện ABCD. Một mặt phẳng \(\left( \alpha \right)\) song song với cả AC và BD cắt các cạnh AB, BC, CD, DA lần lượt tại các điểm P, Q, R, S.
a) Chứng minh rằng tứ giác PQRS là hình bình hành.
b) Xác định vị trí của điểm P trên cạnh AB để tứ giác PQRS là hình thoi.
Lời giải chi tiết
a)
\(\left. \matrix{
AC//\alpha \hfill \cr
AC \subset \left( {ABC} \right) \hfill \cr
(\alpha ) \cap (ABC) = PQ \hfill \cr} \right\} \Rightarrow PQ//AC\)
\(\left. \matrix{
AC//\alpha \hfill \cr
AC \subset \left( {ACD} \right) \hfill \cr
(\alpha ) \cap (ACD) = RS \hfill \cr} \right\} \Rightarrow RS//AC\)
Từ trên, suy ra: PQ // RS (//AC) (1)
Chứng minh tương tự, ta có:
PS // QR (//BD) (2)
Từ (1) và (2) suy ra tứ giác PQRS là hình bình hành.
b) Vì \(PS//BD \Rightarrow {{PS} \over {BD}} = {{PA} \over {AB}}\)
Nên \(PS = {{BD} \over {AB}}.PA.\) (3)
Vì \(PQ//AC \Rightarrow {{PQ} \over {AC}} = {{PB} \over {AB}}\)
Nên \(PQ = {{AC} \over {AB}}.PB.\) (4)
Tứ giác PQRS là hình thoi khi và chỉ khi PS = PQ
\(\eqalign{
& \Leftrightarrow BD.PA = AC.PB \cr
& \Leftrightarrow {{PA} \over {PB}} = {{AC} \over {BD}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(5) \cr} \)
Tứ giác PQRS là hình thoi khi và chỉ khi \(mp\left( \alpha \right)\) qua điểm P (được xác định bởi (5)) đồng thời song song với cả AC và BD.
Unit 6: Transitions
Chương 5. Cơ thể là một thể thống nhất và ngành nghề liên quan đến sinh học cơ thể
CHƯƠNG IV. SINH SẢN - SINH HỌC 11 NÂNG CAO
Chuyên đề 2: Tìm hiểu ngôn ngữ trong đời sống xã hội hiện nay
Chương 3: Điện trường
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11