Câu 74 trang 64 Sách bài tập Hình học 11 nâng cao.

Đề bài

Cho tứ diện ABCD. Một mặt phẳng \(\left( \alpha  \right)\) song song với cả AC và BD cắt các cạnh AB, BC, CD, DA lần lượt tại các điểm P, Q, R, S.

a) Chứng minh rằng tứ giác PQRS là hình bình hành.

b) Xác định vị trí của điểm P trên cạnh AB để tứ giác PQRS là hình thoi.

Lời giải chi tiết

a)

\(\left. \matrix{
AC//\alpha \hfill \cr 
AC \subset \left( {ABC} \right) \hfill \cr 
(\alpha ) \cap (ABC) = PQ \hfill \cr} \right\} \Rightarrow PQ//AC\)

\(\left. \matrix{
AC//\alpha \hfill \cr 
AC \subset \left( {ACD} \right) \hfill \cr 
(\alpha ) \cap (ACD) = RS \hfill \cr} \right\} \Rightarrow RS//AC\)

Từ trên, suy ra: PQ // RS (//AC)   (1)

Chứng minh tương tự, ta có:

PS // QR (//BD)   (2)

Từ (1) và (2) suy ra tứ giác PQRS là hình bình hành.

 b) Vì \(PS//BD \Rightarrow {{PS} \over {BD}} = {{PA} \over {AB}}\)

Nên \(PS = {{BD} \over {AB}}.PA.\)                 (3)

Vì \(PQ//AC \Rightarrow {{PQ} \over {AC}} = {{PB} \over {AB}}\)

Nên \(PQ = {{AC} \over {AB}}.PB.\)                 (4)

Tứ giác PQRS là hình thoi khi và chỉ khi PS = PQ

\(\eqalign{
& \Leftrightarrow BD.PA = AC.PB \cr 
& \Leftrightarrow {{PA} \over {PB}} = {{AC} \over {BD}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(5) \cr} \)

Tứ giác PQRS là hình thoi khi và chỉ khi \(mp\left( \alpha  \right)\) qua điểm P (được xác định bởi (5)) đồng thời song song với cả AC và BD.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved