Câu 73 trang 128 Sách bài tập Hình học 11 Nâng cao

Đề bài

Cho M, N lần lượt là trung điểm của các cạnh AB và CD của tứ diện ABCD; P là điểm thuộc đường thẳng AD sao cho \(\overrightarrow {PA}  = k\overrightarrow {P{\rm{D}}} \), k là số cho trước (k ≠ 1). Xác định điểm Q thuộc đường thẳng BC sao cho PQ và MN cắt nhau. Khi đó, hãy tính tỉ số \({{QB} \over {QC}}.\)

Lời giải chi tiết

  

MN cắt PQ nên các điểm M, N, P, Q cùng thuộc một mặt phẳng. Điều này tương đương với có các số x, y sao cho \(\overrightarrow {MP}  = x\overrightarrow {MN}  + y\overrightarrow {MQ} \).

Đặt \(\overrightarrow {DA}  = \overrightarrow a ,\overrightarrow {DB}  = \overrightarrow b ,\overrightarrow {DC}  = \overrightarrow c .\)

Khi đó

\(\eqalign{  & \overrightarrow {MN}  = {1 \over 2}\left( {\overrightarrow {A{\rm{D}}}  + \overrightarrow {BC} } \right)  \cr  &  = {1 \over 2}\left( { - \overrightarrow a  - \overrightarrow b  + \overrightarrow c } \right)  \cr  & \overrightarrow {MP}  = {{\overrightarrow {MA}  - k\overrightarrow {M{\rm{D}}} } \over {1 - k}}  \cr  &  = {1 \over {1 - k}}\left[ {{1 \over 2}\left( {\overrightarrow a  - \overrightarrow b } \right) - {k \over 2}\left( {\overrightarrow a  - \overrightarrow b  - 2\overrightarrow a } \right)} \right]  \cr  &  = {1 \over {1 - k}}\left[ {{1 \over 2}\left( {\overrightarrow a  - \overrightarrow b } \right) + {k \over 2}\left( {\overrightarrow a  + \overrightarrow b } \right)} \right]  \cr  &  = {1 \over {2\left( {1 - k} \right)}}\left[ {\left( {1 + k} \right)\overrightarrow a  + \left( {k - 1} \right)\overrightarrow b } \right]  \cr  &  = {{k + 1} \over {2\left( {1 - k} \right)}}\overrightarrow a  - {1 \over 2}\overrightarrow {b.}   \cr  & \overrightarrow {MQ}  = \overrightarrow {MB}  + \overrightarrow {BQ}   \cr  &  = {1 \over 2}\left( {\overrightarrow b  - \overrightarrow a } \right) + t\left( { - \overrightarrow b  + \overrightarrow c } \right)  \cr  &  =  - {1 \over 2}\overrightarrow a  + \left( {{1 \over 2} - t} \right)\overrightarrow b  + t\overrightarrow c  \cr} \)

Từ đó ta có

\(\eqalign{  & \overrightarrow {MP}  = x\overrightarrow {MN}  + y\overrightarrow {MQ}   \cr  &  \Leftrightarrow \left\{ \matrix{  {{k + 1} \over {2\left( {1 - k} \right)}} =  - {1 \over 2}x - {1 \over 2}y \hfill \cr   - {1 \over 2} =  - {1 \over 2}x + y\left( {{1 \over 2} - t} \right) \hfill \cr  0 = {1 \over 2}x + yt \hfill \cr}  \right.  \cr  &  \Rightarrow y =  - 1,x = {{k + 1} \over {k - 1}} + 1 = {{2k} \over {k - 1}}  \cr  & t = {k \over {k - 1}} \cr} \)

Như vậy

\(\eqalign{  & \overrightarrow {BQ}  = {k \over {k - 1}}\overrightarrow {BC}  = {k \over {k - 1}}\left( {\overrightarrow {BQ}  + \overrightarrow {QC} } \right)  \cr  &  \Leftrightarrow \left( {1 - {k \over {k - 1}}} \right)\overrightarrow {BQ}  = {k \over {k - 1}}\overrightarrow {QC}   \cr  &  \Leftrightarrow  - \overrightarrow {BQ}  = k.\overrightarrow {QC}   \cr  &  \Leftrightarrow {{QB} \over {QC}} = \left| k \right| \cr} \)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved