Trong mặt phẳng cho một tập hợp \(P\) gồm \(n\) điểm. Hỏi :
LG a
LG a
Có bao nhiêu đoạn thẳng mà hai đầu mút thuộc P ?
Phương pháp giải:
Giả sử \(P{\rm{ }} = {\rm{ }}\{ {A_1};{\rm{ }}{A_2};{\rm{ }}{A_3};{\rm{ }} \ldots ;{\rm{ }}{A_n}\} \).
Với mỗi tập con \(\{ {A_1};{\rm{ }}{A_2}\} {\rm{ }}\left( {i{\rm{ }} \ne {\rm{ }}j} \right)\), ta tạo được đoạn thẳng \({A_i}{A_j}\).
Ngược lại, mỗi đoạn thẳng với hai đầu mút là hai điểm \({A_j},{\rm{ }}{A_i}\) tương ứng với tập con \(\{ {A_j},{\rm{ }}{A_i}\} \).
Thứ tự hai đầu mút không quan trọng : Đoạn thẳng \({A_i}{A_j}\) và đoạn thẳng \({A_j}{A_i}\) chỉ là một đoạn thẳng.
Lời giải chi tiết:
Mỗi cách chọn ra 2 điểm trong tập hợp P có n điểm và nối chúng lại ta được một đoạn thẳng. (không phân biệt thứ tự)
Vậy số đoạn thẳng mà hai đầu mút là hai điểm thuộc \(P\) chính bằng số tổ hợp chập 2 của \(n\) phần tử, tức là \(C_n^2 = {{n\left( {n - 1} \right)} \over 2}.\)
LG b
LG b
Có bao nhiêu vecto khác vecto \(\overrightarrow 0 \) mà điểm đầu và điểm cuối thuộc P ?
Phương pháp giải:
Với mỗi bộ hai điểm có sắp thứ tự \(({A_i},{\rm{ }}{A_j}) (i ≠ j)\) ta tạo được một vecto \(\overrightarrow {{A_i}{A_j}} \) ứng với một bộ hai điểm có sắp thứ tự \(({A_i},{\rm{ }}{A_j})\), \(A_i\) là điểm gốc, \(A_j\) là điểm ngọn. Thứ tự hai điểm ở đây quan trọng vì \(\overrightarrow {{A_i}{A_j}} \,và \,\overrightarrow {{A_j}{A_i}} \) là hai vecto khác nhau.
Lời giải chi tiết:
Mỗi cách chọn ra 2 phân tử trong tập hợp P gồm n phần tử và sắp xếp thứ tự cho chúng sẽ được một véc tơ.
Do đó số vecto cần tìm bằng số chỉnh hợp chập \(2\) của \(n\) phần tử, tức là bằng \(A_n^2 = n\left( {n - 1} \right).\)
Ngữ pháp
CHƯƠNG 8: DẪN XUẤT HALOGEN - ANCOL - PHENOL
Bài 8: Tiết 1: Tự nhiên, dân cư, xã hội Liên bang Nga - Tập bản đồ Địa lí 11
Phần ba. Sinh học cơ thể
Unit 6: On the go
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11