Câu 67 trang 127 Sách bài tập Hình học 11 Nâng cao

Đề bài

Cho ABC là tam giác đều cạnh a. Trên đường thẳng At vuông góc với mp(ABC) lấy điểm S với AS = b.

a) Tính khoảng cách từ điểm A đến mặt phẳng (SBC) theo a, b.

b) Hz là đường thẳng đi qua trực tâm H của tam giác SBC và vuông góc với mp(SBC). Chứng minh rằng khi S di động trên At thì đường thẳng Hz luôn đi qua một điểm cố định.

Lời giải chi tiết

 

a) Gọi A1 là trung điểm của BC thì \(BC \bot mp\left( {SA{A_1}} \right)\),  từ đó \(\left( {SA{A_1}} \right) \bot \left( {SBC} \right)\).

Kẻ đường cao AI của tam giác SAA1 thì \(AI \bot \left( {SBC} \right)\). Từ đó, khoảng cách từ A đến mp(SBC) bằng AI.

Ta có \(AI = {{AS.A{A_1}} \over {S{A_1}}} = {{b.{{a\sqrt 3 } \over 2}} \over {\sqrt {{b^2} + {{3{a^2}} \over 4}} }}\).

Vậy \(AI = {{ab\sqrt 3 } \over {\sqrt {3{{\rm{a}}^2} + 4{b^2}} }}\).

b) Vì H là trực tâm tam giác SBC nên H thuộc SA1. Do \(\left( {SA{A_1}} \right) \bot \left( {SBC} \right)\)  và \(H{\rm{z}} \bot \left( {SBC} \right)\) nên Hz nằm trong mp(SAA1). Gọi K là giao điểm của Hz và AA1, ta có \(KH \bot \left( {SBC} \right),BH \bot SC\) nên \(KB \bot SC\) (định lí ba đường vuông góc).

Mặt khác \(SA \bot \left( {ABC} \right),BK \bot SC\) nên \(BK \bot AC\) (định lí ba đường vuông góc). Như vậy K là trực tâm của tam giác ABC.

Vậy khi S di động trên đường thẳng At vuông góc với mp(ABC) thì đường thẳng Hz đi qua điểm cố định là trực tâm K của tam giác ABC.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved