Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Một đường thẳng thay đổi đi qua A cắt (O) ở A và M, cắt (O’) tại A và M’. Gọi P và P’ lần lượt là trung điểm của AM và AM’.
a) Tìm quỹ tích trung điểm I của đoạn thẳng PP’.
b) Tìm quỹ tích trung điểm J của đoạn thẳng MM’.
Lời giải chi tiết
a) Gọi Q là trung điểm của OO’ thì QI\( \bot \)IA. Suy ra quỹ tích I là đường tròn đường kính AQ.
b) Vì J là trung điểm MM’ nên
\(\overrightarrow {AJ} = {1 \over 2}\left( {\overrightarrow {AM} + \overrightarrow {AM'} } \right)\)
\( = \overrightarrow {AP} + \overrightarrow {AP'} = 2\overrightarrow {AI} \)
Vậy phép vị tự tâm A tỉ số 2 biến điểm I thành điểm J. Do đó, quỹ tích J là ảnh của đường tròn đường kính AQ qua phép vị tự đó.
Phần ba. Sinh học cơ thể
Chuyên đề 2: Chiến tranh và hòa bình trong thế kỉ XX
Chuyên đề II. Làm quen với một vài yếu tố của lí thuyết đồ thị
Unit 3: A Party - Một bữa tiệc
Bài 11: Tiết 4: Thực hành: Tìm hiểu về hoạt động kinh tế đối ngoại của Đông Nam Á - Tập bản đồ Địa lí 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11