Câu 4 trang 34 SGK Hình học 11 Nâng cao .

Đề bài

Cho vecto \(\overrightarrow u \) và điểm O. Với điểm M bất kì, ta gọi M1là điểm đối xứng với M qua O và M’ là điểm sao cho \(\overrightarrow {{M_1}M'} = \overrightarrow u \). Gọi F là phép biến hình biến M thành M’

a. F là phép hợp thành của hai phép nào ? F có phải là phép dời hình hay không?

b. Chứng tỏ rằng F là một phép đối xứng tâm

Lời giải chi tiết

a. F là hợp thành của hai phép: phép đối xứng tâm ĐOvới tâm O và phép tịnh tiến T theo vecto \(\overrightarrow u \). Ta có F là phép dời hình vì ĐO và T là phép dời hình

b. Giả sử M1 = ĐO(M) và M’ = \(T_{\overrightarrow u }\)(M1)

Nếu gọi O’ là trung điểm của MM’ thì:

\(\overrightarrow {OO'} = {{\overrightarrow {{M_1}M'} } \over 2} = {{\overrightarrow u } \over 2}\)

Vậy điểm O’ cố định và F chính là phép đối xứng qua tâm O’

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved