ĐẠI SỐ VÀ GIẢI TÍCH - SBT TOÁN 11 NÂNG CAO

Câu 3.14 trang 87 sách bài tập Đại số và Giải tích 11 Nâng cao

Đề bài

Trong mặt phẳng tọa độ, đồ thị (C) của hàm số \(y = 2x + 1.\) Trên (C) lấy điểm \({A_1}\) có hoành độ bằng \({1 \over 3}.\) Qua \({A_1}\) kẻ một đường thẳng song song với trục hoành cắt đường thẳng \(\Delta \) chứa đường phân giác của góc phần tư thứ nhất tại điểm \({B_1};\) gọi \({A_2}\) là giao điểm của (C) với đường thẳng đi qua \({B_1}\)  và song song với trục tung. Với điểm \({A_2},\) lại thực hiện các bước tương tự như đã làm với điểm \({A_1}\) ta sẽ được điểm \({A_3}.\) Với điểm \({A_3},\) lại làm như thế với điểm \({A_4}.\) Cứ tiếp tục mãi quá trình trên, ta sẽ được một dãy vô hạn các điểm \({A_1},{A_2},{A_3},{A_4},...\) nằm trên đồ thị (C), (h.3.1)

Với mỗi số nguyên dương n, gọi \({u_n}\) là hoành độ của điểm \({A_n}.\) Hãy cho dãy số \(\left( {{u_n}} \right)\) bởi hệ thức truy hồi.

 

Lời giải chi tiết

- Phương trình của đường thẳng \(\Delta :y = x\)

- Với mỗi \(n \ge 1,\) kí hiệu \({a_n}\) và \({b_n}\) tương ứng là tung độ của điểm \({A_n}\) và điểm \({B_{n.}}\) Khi đó:

- Do \({A_n}\) nằm trên (C) nên \({a_n} = 2{u_n} + 1\)

- Do \({B_n}\) nằm trên đường thẳng đi qua \({A_n}\) và song song với trục hoành nên \({b_n} = {a_n} = 2{u_n} + 1\)

- Do \({B_n}\) nằm trên đường thẳng đi qua \({A_{n + 1}}\) và song song với trục tung nên hoành độ của nó bằng \({u_{n + 1}}\)

Từ đó, do \({B_n}\) nằm trên \(\Delta \) nên \({u_{n + 1}} = {b_n} = 2{u_n} + 1\) với mọi \(n \ge 1\)

Vậy, dãy số \(\left( {{u_n}} \right)\) được xác định bởi \({u_1} = {1 \over 3}\) và \({u_{n + 1}} = 2{u_n} + 1\) với mọi \(n \ge 1\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved