Câu 31 trang 56 Sách bài tập Hình học 11 nâng cao.

Đề bài

Cho tứ diện ABCD và bốn điểm M, N, E, F lần lượt nằm trên các cạnh AB, BC, CD và DA. Chứng minh rằng:

a) Nếu bốn điểm M, N, E, F đồng phẳng thì \({{MA} \over {MB}}.{{NB} \over {NC}}.{{EC} \over {ED}}.{{FD} \over {FA}} = 1\).

b) Nếu \({{MA} \over {MB}}.{{NB} \over {NC}}.{{EC} \over {ED}}.{{FD} \over {FA}} = 1\) thì bốn điểm M, N, E, F đồng phẳng.

Lời giải chi tiết

a) Trường hợp 1. MN // EF

Theo hệ quả của định lí giao tuyến của ba mặt phẳng (ABC), (ACD), (MNEF) ta có MN//EF // AC. Do đó ta có:

\({{MA} \over {MB}} = {{NC} \over {NB}},\,{{EC} \over {ED}} = {{FA} \over {FD}}\)

\(\eqalign{
& \Rightarrow {{MA} \over {MB}}.{{NB} \over {NC}}.{{EC} \over {ED}}.{{FD} \over {FA}}  \cr 
& = {{NC} \over {NB}}. {{NB} \over {NC}}.{{FA} \over {FD}}.{{FD} \over {FA}} = 1 \cr} \) suy ra điều phải chứng minh.

Trường hợp 2. MN cắt EF tại O.

Theo định lí về giao tuyến của ba mặt phẳng (ABC), (ADC), (MNEF) ta có MN, AC, EF đồng quy tại O. Kẻ \(CI//AB,\,CJ//AD\,\left( {I \in MN,\,J \in FE} \right),\) ta có:

\(\eqalign{
& {{NB} \over {NC}} = {{MB} \over {CI}},\,{{OC} \over {OA}} = {{CI} \over {MA}} \cr 
& \Rightarrow {{MA} \over {MB}}.{{NB} \over {NC}}.{{OC} \over {OA.}} \cr 
& = {{MA} \over {MB}}.{{MB} \over {CI}}.{{CI} \over {MA}} = 1 \cr} \)

Tương tự ta có:

\({{EC} \over {ED}}.{{FD} \over {FA}}.{{OA} \over {OC}} = 1\)

Vậy \({{MA} \over {MB}}.{{NB} \over {NC}}.{{EC} \over {ED}}.{{FD} \over {FA}} = {{OA} \over {OC}}.{{OC} \over {OA}} = 1\)

b) Giả sử mặt phẳng (MNE) cắt cạnh AD tại F’. Theo câu a), ta có:

\({{MA} \over {MB}}.{{NB} \over {NC}}.{{EC} \over {ED}}.{{F'D} \over {F'A}} = 1\)

Theo giả thiết \({{MA} \over {MB}}.{{NB} \over {NC}}.{{EC} \over {ED}}.{{FD} \over {FA}} = 1 \Rightarrow F'D = FD\).

Vì F, F’ đều nằm trong đoạn thẳng AD nên \(F' \equiv F\) . Điều này có nghĩa là bốn điểm M, N, E, F đồng phẳng.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved