Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho tứ diện ACBD. Gọi I và J lần lượt là trung điểm của BC và BD; E là một điểm thuộc cạnh AD khác với A và D.
a) Xác định thiết diện của tứ diện khi cắt bởi mp(IJE).
b) Tìm vị trí của điểm E trên AD sao cho thiết diện là hình bình hành.
c) Tìm điều kiện của tứ giác ABCD và vị trí của điểm E trên cạnh AD để thiết diện là hình thoi.
Lời giải chi tiết
a) Ta có IJ là đường trung bình của tam giác BCD nên IJ//CD.
Mặt khác \(IJ \subset \left( {IJE} \right);\,\,CD \subset \left( {ACD} \right)\) suy ra mp(IJE) cắt mp(ACD) theo giao tuyến Ex//CD. Gọi F là giao điểm của Ex và AC. Thiết diện là hình thang EFIJ.
b) Để thiết diện EFIJ là hình bình hành điều kiện cần và đủ là IF // JE.
Điều này tương đương với JE //AB tức là khi và chỉ khi E là trung điểm của AD.
c) Thiết diện EFIJ là hình thoi \( \Leftrightarrow \) EFIJ là hình bình hành và IF = IJ \( \Leftrightarrow \) E là trung điểm của AD và AB = CD (vì \(IJ = {1 \over 2}CD\) và khi E là trung điểm của AD thì \(IF = {1 \over 2}AB\)).
Bài 9: Phương pháp tách biệt và tinh chế hợp chất hữu cơ
Chủ đề 5. Cơ thể là một thể thống nhất và ngành nghề liên quan đến sinh học cơ thể
Chủ đề 3. Điện trường
CHƯƠNG 7: HIĐROCACBON THƠM, NGUỒN HIĐROCACBON THIÊN NHIÊN. HỆ THỐNG HÓA VỀ HIĐROCACBON
Unit 2: The generation gap
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11