GIẢI TÍCH SBT - TOÁN 12 NÂNG CAO
GIẢI TÍCH SBT - TOÁN 12 NÂNG CAO

Câu 2.48 trang 77 sách bài tập Giải tích 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

Hãy chứng minh

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d

LG a

\({\log _{{1 \over 2}}}3 + {\log _3}{1 \over 2} <  - 2;\)

Lời giải chi tiết:

Ta có \({\log _{{1 \over 2}}}3 = {1 \over {{{\log }_3}{1 \over 2}}}\)và\({1 \over {\left| {{{\log }_3}{1 \over 2}} \right|}} + \left| {{{\log }_3}{1 \over 2}} \right| > 2\)

( theo công thức đổi cơ số của lôgarit,bất đẳng thức Cô- si và \({1 \over {\left| {{{\log }_3}{1 \over 2}} \right|}} \ne \left| {{{\log }_3}{1 \over 2}} \right|)\)

Mặt khác, \({\log _3}{1 \over 2} < 0\) nên \( - {1 \over {{{\log }_3}{1 \over 2}}} - {\log _3}{1 \over 2} > 2\), hay \({\log _{{1 \over 2}}}3 + {\log _3}{1 \over 2} <  - 2\)

LG b

\({4^{{{\log }_5}7}} = {7^{{{\log }_5}4}}\)

Lời giải chi tiết:

\({4^{{{\log }_5}7}} = {7^{{{\log }_5}4}} \Leftrightarrow {\log _4}{4^{{{\log }_5}7}} = {\log _4}{7^{{{\log }_5}4}} \)

\(\Leftrightarrow {\log _5}7 = {\log _5}4.{\log _4}7\).

Đẳng thức cuối cùng đúng suy ra đẳng thức đầu tiên đúng .

LG c

\({\log _3}7 + {\log _7}3 > 2;\)

Lời giải chi tiết:

Ta có   \({\log _3}7 > 0\),\({\log _7}3 > 0\) và \({\log _3}7 = {1 \over {{{\log }_7}3}} \ne {\log _7}3\).

Theo bất đẳng thức Cô-si, ta có

\({1 \over {{{\log }_7}3}} + {\log _7}3 > 2\),suy ra \({\log _3}7 + {\log _7}3 > 2\).

LG d

\({3^{{{\log }_2}5}} = {5^{{{\log }_2}3}}.\)

Lời giải chi tiết:

\({3^{{{\log }_2}5}} = {5^{{{\log }_2}3}} \Leftrightarrow {\log _3}{3^{{{\log }_2}5}} = {\log _3}{5^{{{\log }_2}3}}\)

\(\Leftrightarrow {\log _2}5 = {\log _2}3.{\log _3}5\).

Đẳng thức cuối cùng đúng suy ra đẳng thức đầu tiên đúng .

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved